Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nat Ecol Evol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811837

RESUMO

The ability of climatic niche models to predict species extinction risks can be hampered if niches are incompletely quantified. This can occur when niches are estimated considering only currently available climatic conditions, disregarding the fact that climate change can open up portions of the fundamental niche that are currently inaccessible to species. Using a new metric, we estimate the prevalence of potential situations of fundamental niche truncation by measuring whether current ecological niche limits are contiguous to the boundaries of currently available climatic conditions for 24,944 species at the global scale in both terrestrial and marine realms and including animals and plants. We show that 12,172 (~49%) species are showing niche contiguity, particularly those inhabiting tropical ecosystems and the marine realm. Using niche expansion scenarios, we find that 86% of species showing niche contiguity could have a fundamental niche potentially expanding beyond current climatic limits, resulting in lower-yet still alarming-rates of predicted biodiversity loss, particularly within the tropics. Caution is therefore advised when forecasting future distributions of species presenting niche contiguity, particularly towards climatic limits that are predicted to expand in the future.

2.
J Biogeogr ; 51(1): 89-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38515765

RESUMO

The Anthropocene is characterized by a rapid pace of environmental change and is causing a multitude of biotic responses, including those that affect the spatial distribution of species. Lagged responses are frequent and species distributions and assemblages are consequently pushed into a disequilibrium state. How the characteristics of environmental change-for example, gradual 'press' disturbances such as rising temperatures due to climate change versus infrequent 'pulse' disturbances such as extreme events-affect the magnitude of responses and the relaxation times of biota has been insufficiently explored. It is also not well understood how widely used approaches to assess or project the responses of species to changing environmental conditions can deal with time lags. It, therefore, remains unclear to what extent time lags in species distributions are accounted for in biodiversity assessments, scenarios and models; this has ramifications for policymaking and conservation science alike. This perspective piece reflects on lagged species responses to environmental change and discusses the potential consequences for species distribution models (SDMs), the tools of choice in biodiversity modelling. We suggest ways to better account for time lags in calibrating these models and to reduce their leverage effects in projections for improved biodiversity science and policy.

3.
Sci Total Environ ; 926: 171741, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508261

RESUMO

Mounting evidence points to the need for high-resolution climatic data in biodiversity analyses under global change. As we move to finer resolution, other factors than climate, including other abiotic variables and biotic interactions play, however, an increasing role, raising the question of our ability to predict community composition at fine scales. Focusing on two lineages of land plants, bryophytes and tracheophytes, we determine the relative contribution of climatic, non-climatic environmental drivers, spatial effects, community architecture and composition of one lineage to predict community composition of the other lineage, and how our ability to predict community composition varies along an elevation gradient. The relationship between community composition of one lineage and 68 environmental variables at 2-25 m spatial resolution, architecture and composition of the other lineage, and spatial factors, was investigated by hierarchical and variance partitioning across 413 2x2m plots in the Swiss Alps. Climatic data, although significant, contributed less to the model than any other variable considered. Community composition of one lineage, reflecting both direct interactions and unmeasured (hidden) abiotic factors, was the best predictor of community composition of the other lineage. Total explained variance substantially varied with elevation, underlining the fact that the strength of the species composition-environment relationship varies depending on environmental conditions. Total variance explained increased towards high elevation up to 50 %, with an increasing importance of spatial effects and vegetation architecture, pointing to increasing positive interactions and aggregated species distribution patterns in alpine environments. In tracheophytes, an increase of the contribution of non-climatic environmental factors was also observed at high elevation, in line with the hypothesis of a stronger environmental control under harsher conditions. Further improvements of our ability to predict changes in plant community composition may involve the implementation of historical variables and higher-resolution climatic data to better describe the microhabitat conditions actually experienced by organisms.


Assuntos
Briófitas , Traqueófitas , Biodiversidade , Plantas
4.
ISME Commun ; 4(1): ycad013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38374896

RESUMO

Bacteria colonize the body of macroorganisms to form associations ranging from parasitic to mutualistic. Endosymbiont and gut symbiont communities are distinct microbiomes whose compositions are influenced by host ecology and evolution. Although the composition of horizontally acquired symbiont communities can correlate to host species identity (i.e. harbor host specificity) and host phylogeny (i.e. harbor phylosymbiosis), we hypothesize that the microbiota structure of vertically inherited symbionts (e.g. endosymbionts like Wolbachia) is more strongly associated with the host species identity and phylogeny than horizontally acquired symbionts (e.g. most gut symbionts). Here, using 16S metabarcoding on 336 guts from 24 orthopteran species (grasshoppers and crickets) in the Alps, we observed that microbiota correlated to host species identity, i.e. hosts from the same species had more similar microbiota than hosts from different species. This effect was ~5 times stronger for endosymbionts than for putative gut symbionts. Although elevation correlated with microbiome composition, we did not detect phylosymbiosis for endosymbionts and putative gut symbionts: closely related host species did not harbor more similar microbiota than distantly related species. Our findings indicate that gut microbiota of studied orthopteran species is more correlated to host identity and habitat than to the host phylogeny. The higher host specificity in endosymbionts corroborates the idea that-everything else being equal-vertically transmitted microbes harbor stronger host specificity signal, but the absence of phylosymbiosis suggests that host specificity changes quickly on evolutionary time scales.

5.
Sci Data ; 11(1): 231, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396146

RESUMO

We present forecasts of land-use/land-cover (LULC) change for Switzerland for three time-steps in the 21st century under the representative concentration pathways 4.5 and 8.5, and at 100-m spatial and 14-class thematic resolution. We modelled the spatial suitability for each LULC class with a neural network (NN) using > 200 predictors and accounting for climate and policy changes. We improved model performance by using a data augmentation algorithm that synthetically increased the number of cells of underrepresented classes, resulting in an overall quantity disagreement of 0.053 and allocation disagreement of 0.15, which indicate good prediction accuracy. These class-specific spatial suitability maps outputted by the NN were then merged in a single LULC map per time-step using the CLUE-S algorithm, accounting for LULC demand for the future and a set of LULC transition rules. As the first LULC forecast for Switzerland at a thematic resolution comparable to available LULC maps for the past, this product lends itself to applications in land-use planning, resource management, ecological and hydraulic modelling, habitat restoration and conservation.

6.
Am Nat ; 203(1): 124-138, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207136

RESUMO

AbstractSpecies' distributions can take many different forms. For example, fat-tailed or skewed distributions are very common in nature, as these can naturally emerge as a result of individual variability and asymmetric environmental tolerances, respectively. Studying the basic shape of distributions can teach us a lot about the ways climatic processes and historical contingencies shape ecological communities. Yet we still lack a general understanding of how their shapes and properties compare to each other along gradients. Here, we use Bayesian nonlinear models to quantify range shape properties in empirical plant distributions. With this approach, we are able to distil the shape of plant distributions and compare them along gradients and across species. Studying the relationship between distribution properties, we revealed the existence of broad macroecological patterns along environmental gradients-such as those expected from Rapoport's rule and the abiotic stress limitation hypothesis. We also find that some aspects of the shape of observed ranges-such as kurtosis and skewness of the distributions-could be intrinsic properties of species or the result of their historical contexts. Overall, our modeling approach and results untangle the general shape of plant distributions and provide a mapping of how this changes along environmental gradients.


Assuntos
Teorema de Bayes , Dispersão Vegetal , Ecologia
7.
Sci Data ; 11(1): 21, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172116

RESUMO

Standard and easily accessible cross-thematic spatial databases are key resources in ecological research. In Switzerland, as in many other countries, available data are scattered across computer servers of research institutions and are rarely provided in standard formats (e.g., different extents or projections systems, inconsistent naming conventions). Consequently, their joint use can require heavy data management and geomatic operations. Here, we introduce SWECO25, a Swiss-wide raster database at 25-meter resolution gathering 5,265 layers. The 10 environmental categories included in SWECO25 are: geologic, topographic, bioclimatic, hydrologic, edaphic, land use and cover, population, transportation, vegetation, and remote sensing. SWECO25 layers were standardized to a common grid sharing the same resolution, extent, and geographic coordinate system. SWECO25 includes the standardized source data and newly calculated layers, such as those obtained by computing focal or distance statistics. SWECO25 layers were validated by a data integrity check, and we verified that the standardization procedure had a negligible effect on the output values. SWECO25 is available on Zenodo and is intended to be updated and extended regularly.

8.
Mol Ecol ; 33(1): e16862, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36786039

RESUMO

Different host species associate with distinct gut microbes in mammals, a pattern sometimes referred to as phylosymbiosis. However, the processes shaping this host specificity are not well understood. One model proposes that barriers to microbial transmission promote specificity by limiting microbial dispersal between hosts. This model predicts that specificity levels measured across microbes is correlated to transmission mode (vertical vs. horizontal) and individual dispersal traits. Here, we leverage two large publicly available gut microbiota data sets (1490 samples from 195 host species) to test this prediction. We found that host specificity varies widely across bacteria (i.e., there are generalist and specialist bacteria) and depends on transmission mode and dispersal ability. Horizontally-like transmitted bacteria equipped with traits that facilitate switches between host (e.g., tolerance to oxygen) were found to be less specific (more generalist) than microbes without those traits, for example, vertically-like inherited bacteria that are intolerant to oxygen. Altogether, our findings are compatible with a model in which limited microbial dispersal abilities foster host specificity.


Assuntos
Microbioma Gastrointestinal , Animais , Mamíferos/microbiologia , Especificidade de Hospedeiro , Bactérias/genética , Oxigênio
9.
PLoS One ; 18(11): e0293966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930975

RESUMO

Predicting the presence or absence (occurrence-state) of species in a certain area is highly important for conservation. Occurrence-state can be assessed by network models that take suitable habitat patches as nodes, connected by potential dispersal of species. To determine connections, a connectivity threshold is set at the species' maximum dispersal distance. However, this requires field observations prone to underestimation, so for most animal species there are no trustable maximum dispersal distance estimations. This limits the development of accurate network models to predict species occurrence-state. In this study, we performed a sensitivity analysis of the performance of network models to different settings of maximum dispersal distance. Our approach, applied on six amphibian species in Switzerland, used habitat suitability modelling to define habitat patches, which were linked within a dispersal distance threshold to form habitat networks. We used network topological measures, patch suitability, and patch size to explain species occurrence-state in habitat patches through boosted regression trees. These modelling steps were repeated on each species for different maximum dispersal distances, including a species-specific value from literature. We evaluated mainly the predictive performance and predictor importance among the network models. We found that predictive performance had a positive relation with the distance threshold, and that almost none of the species-specific values from literature yielded the best performance across tested thresholds. With increasing dispersal distance, the importance of the habitat-quality-related variable decreased, whereas that of the topology-related predictors increased. We conclude that the sensitivity of these models to the dispersal distance parameter stems from the very different topologies formed with different movement assumptions. Most reported maximum dispersal distances are underestimated, presumably due to leptokurtic dispersal distribution. Our results imply that caution should be taken when selecting a dispersal distance threshold, considering higher values than those derived from field reports, to account for long-distance dispersers.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Suíça , Especificidade da Espécie
10.
Oecologia ; 202(4): 699-713, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558733

RESUMO

Monitoring of terrestrial and aquatic species assemblages at large spatial scales based on environmental DNA (eDNA) has the potential to enable evidence-based environmental policymaking. The spatial coverage of eDNA-based studies varies substantially, and the ability of eDNA metabarcoding to capture regional biodiversity remains to be assessed; thus, questions about best practices in the sampling design of entire landscapes remain open. We tested the extent to which eDNA sampling can capture the diversity of a region with highly heterogeneous habitat patches across a wide elevation gradient for five days through multiple hydrological catchments of the Swiss Alps. Using peristaltic pumps, we filtered 60 L of water at five sites per catchment for a total volume of 1800 L. Using an eDNA metabarcoding approach focusing on vertebrates and plants, we detected 86 vertebrate taxa spanning 41 families and 263 plant taxa spanning 79 families across ten catchments. For mammals, fishes, amphibians and plants, the detected taxa covered some of the most common species in the region according to long-term records while including a few more rare taxa. We found marked turnover among samples from distinct elevational classes indicating that the biological signal in alpine rivers remains relatively localised and is not aggregated downstream. Accordingly, species compositions differed between catchments and correlated with catchment-level forest and grassland cover. Biomonitoring schemes based on capturing eDNA across rivers within biologically integrated catchments may pave the way toward a spatially comprehensive estimation of biodiversity.


Assuntos
DNA Ambiental , Animais , Monitoramento Ambiental , Código de Barras de DNA Taxonômico , Biodiversidade , Vertebrados/genética , Ecossistema , Peixes/genética , Mamíferos/genética
11.
Trends Ecol Evol ; 38(10): 936-945, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37236880

RESUMO

The environmental niche concept describes the distribution of a taxon in the environment and can be used to understand community dynamics, biological invasions, and the impact of environmental changes. The uses and applications are still restricted in microbial ecology, largely due to the complexity of microbial systems and associated methodological limitations. The development of shotgun metagenomics and metatranscriptomics opens new ways to investigate the microbial niche by focusing on the metabolic niche within the environmental space. Here, we propose the metabolic niche framework, which, by defining the fundamental and realised metabolic niche of microorganisms, has the potential to not only provide novel insights into habitat preferences and the metabolism associated, but also to inform on metabolic plasticity, niche shifts, and microbial invasions.


Assuntos
Ecossistema , Metagenômica
12.
Sci Rep ; 13(1): 7312, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147401

RESUMO

Since the late 1990s, Nature's Contributions to People (NCPs; i.e. ecosystem services) were used as a putative leverage for fostering nature preservation. NCPs have largely been defined and mapped at the landscape level using land use and cover classifications. However, NCP mapping attempts based directly on individual species are still uncommon. Given that species shape ecosystems and ultimately deliver NCPs, mapping NCPs based on species distribution data should deliver highly meaningful results. This requires first establishing a census of the species-to-NCP relationships. However, datasets quantifying these relationships across several species and NCPs are rare. Here, we fill this gap by compiling literature and expert knowledge to establish the relationships of 1816 tracheophyte and 250 vertebrate species with 17 NCPs in the Swiss Alps. We illustrated the 31,098 identified species-NCP relationships for the two lineages and discuss why such a table is a key initial step in building spatial predictions of NCPs directly from species data, e.g. to ultimately complement spatial conservation planning.


Assuntos
Ecossistema , Plantas , Humanos , Animais , Suíça , Vertebrados , Conservação dos Recursos Naturais
13.
Mol Ecol ; 32(13): 3747-3762, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37060060

RESUMO

The processes governing soil bacteria biogeography are still not fully understood. It remains unknown how the importance of environmental filtering and dispersal differs between bacterial taxonomic and functional biogeography, and whether their importance is scale-dependent. We sampled soils across the Tibet plateau, with distances among plots ranging from 20 m to 1550 km. Taxonomic composition of bacterial community was characterized by 16S amplicon sequencing and functional community composition by qPCR targeting 9 functional groups involved in N dynamics. Factors representing climate, soil and plant community were measured to assess different facets of environmental dissimilarity. Both bacterial taxonomic and functional dissimilarities were more related to abiotic dissimilarity than biotic (vegetation) dissimilarity or distance. Taxonomic dissimilarity was mostly explained by differences in soil pH and mean annual temperature (MAT), while functional dissimilarity was linked to differences in soil N and P availabilities and N:P ratio. Soil pH and MAT remained the main determinants of taxonomic dissimilarity across spatial scales. In contrast, the explanatory variables of N-related functional dissimilarity varied across the scales, with soil moisture and organic matter having the highest role across short distances (<~330 km), and available P, N:P ratio and distance being important over long distances (>~660 km). Our results demonstrate how biodiversity dimension (taxonomic versus functional aspects) and spatial scale influence the factors driving soil bacterial biogeography.


Assuntos
Microbiologia do Solo , Solo , Tibet , Solo/química , Bactérias/genética , Biodiversidade , Plantas
14.
Science ; 376(6597): 1119-1122, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653482

RESUMO

Mountains are hotspots of biodiversity and ecosystem services, but they are warming about twice as fast as the global average. Climate change may reduce alpine snow cover and increase vegetation productivity, as in the Arctic. Here, we demonstrate that 77% of the European Alps above the tree line experienced greening (productivity gain) and <1% browning (productivity loss) over the past four decades. Snow cover declined significantly during this time, but in <10% of the area. These trends were only weakly correlated: Greening predominated in warmer areas, driven by climatic changes during summer, while snow cover recession peaked at colder temperatures, driven by precipitation changes. Greening could increase carbon sequestration, but this is unlikely to outweigh negative implications, including reduced albedo and water availability, thawing permafrost, and habitat loss.


Assuntos
Biodiversidade , Desenvolvimento Vegetal , Neve , Mudança Climática , Região dos Alpes Europeus , Estações do Ano
15.
Int J Parasitol ; 52(9): 617-627, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760376

RESUMO

Understanding the drivers of infection risk helps us to detect the most at-risk species in a community and identify species whose intrinsic characteristics could act as potential reservoirs of pathogens. This knowledge is crucial if we are to predict the emergence and evolution of infectious diseases. To date, most studies have only focused on infections caused by a single parasite, leaving out co-infections. Yet, co-infections are of paramount importance in understanding the ecology and evolution of host-parasite interactions due to the wide range of effects they can have on host fitness and on the evolutionary trajectories of parasites. Here, we used a multinomial Bayesian phylogenetic modelling framework to explore the extent to which bird ecology and phylogeny impact the probability of being infected by one genus (hereafter single infection) or by multiple genera (hereafter co-infection) of haemosporidian parasites. We show that while nesting and migration behaviours influenced both the probability of being single- and co-infected, species position along the slow-fast life-history continuum and geographic range size were only pertinent in explaining variation in co-infection risk. We also found evidence for a phylogenetic conservatism regarding both single- and co-infections, indicating that phylogenetically related bird species tend to have similar infection patterns. This phylogenetic signal was four times stronger for co-infections than for single infections, suggesting that co-infections may act as a stronger selective pressure than single infections. Overall, our study underscores the combined influence of hosts' evolutionary history and attributes in determining infection risk in avian host communities. These results also suggest that co-infection risk might be under stronger deterministic control than single infection risk, potentially paving the way toward a better understanding of the emergence and evolution of infectious diseases.


Assuntos
Doenças das Aves , Coinfecção , Doenças Transmissíveis , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Teorema de Bayes , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves/parasitologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Haemosporida/genética , Filogenia , Prevalência , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
16.
Ecol Evol ; 12(2): e8590, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222963

RESUMO

Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.

17.
Environ Microbiol ; 24(4): 1689-1702, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347350

RESUMO

Protists are abundant and play key trophic functions in soil. Documenting how their trophic contributions vary across large environmental gradients is essential to understand and predict how biogeochemical cycles will be impacted by global changes. Here, using amplicon sequencing of environmental DNA in open habitat soil from 161 locations spanning 2600 m of elevation in the Swiss Alps (from 400 to 3000 m), we found that, over the whole study area, soils are dominated by consumers, followed by parasites and phototrophs. In contrast, the proportion of these groups in local communities shows large variations in relation to elevation. While there is, on average, three times more consumers than parasites at low elevation (400-1000 m), this ratio increases to 12 at high elevation (2000-3000 m). This suggests that the decrease in protist host biomass and diversity toward mountains tops impact protist functional composition. Furthermore, the taxonomic composition of protists that infect animals was related to elevation while that of protists that infect plants or of protist consumers was related to soil pH. This study provides a first step to document and understand how soil protist functions vary along the elevational gradient.


Assuntos
Parasitos , Solo , Animais , Biodiversidade , Eucariotos/genética , Solo/parasitologia , Microbiologia do Solo , Suíça
18.
Glob Chang Biol ; 28(3): 739-752, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34704308

RESUMO

Despite their importance for biodiversity and ecosystem services, wetlands are among the most threatened ecosystems globally. The conservation of many migratory waterbirds depends on the conservation of a network of key sites along their flyways. However, the suitability of these sites is changing under climate change, and it is important that management of individual sites in the network adapts to these changes. Using bioclimatic models that also account for changes in inundation, we found that projected climate change will reduce habitat suitability for waterbirds at 57.5% of existing Critical Sites within Africa-Eurasia, varying from 20.1% in Eastern Europe to 87.0% in Africa. African and Middle East sites are particularly threatened, comprising 71 of the 100 most vulnerable sites. By highlighting priority sites for conservation and classifying Critical Sites into Climate Change Adaptation Strategy (CCAS) classes, our results can be used to support the climate change adaptation of both individual sites and the entire site network.


Assuntos
Mudança Climática , Ecossistema , Animais , Biodiversidade , Aves , Conservação dos Recursos Naturais
19.
Ecol Appl ; 31(7): e02427, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34318974

RESUMO

Many species distribution models (SDMs) are built with precise but geographically restricted presence-absence data sets (e.g., a country) where only a subset of the environmental conditions experienced by a species across its range is considered (i.e., spatial niche truncation). This type of truncation is worrisome because it can lead to incorrect predictions e.g., when projecting to future climatic conditions belonging to the species niche but unavailable in the calibration area. Data from citizen-science programs, species range maps or atlases covering the full species range can be used to capture those parts of the species' niche that are missing regionally. However, these data usually are too coarse or too biased to support regional management. Here, we aim to (1) demonstrate how varying degrees of spatial niche truncation affect SDMs projections when calibrated with climatically truncated regional data sets and (2) test the performance of different methods to harness information from larger-scale data sets presenting different spatial resolutions to solve the spatial niche truncation problem. We used simulations to compare the performance of the different methods, and applied them to a real data set to predict the future distribution of a plant species (Potentilla aurea) in Switzerland. SDMs calibrated with geographically restricted data sets expectedly provided biased predictions when projected outside the calibration area or time period. Approaches integrating information from larger-scale data sets using hierarchical data integration methods usually reduced this bias. However, their performance varied depending on the level of spatial niche truncation and how data were combined. Interestingly, while some methods (e.g., data pooling, downscaling) performed well on both simulated and real data, others (e.g., those based on a Poisson point process) performed better on real data, indicating a dependency of model performance on the simulation process (e.g., shape of simulated response curves). Based on our results, we recommend to use different data integration methods and, whenever possible, to make a choice depending on model performance. In any case, an ensemble modeling approach can be used to account for uncertainty in how niche truncation is accounted for and identify areas where similarities/dissimilarities exist across methods.


Assuntos
Plantas , Simulação por Computador , Previsões , Suíça , Incerteza
20.
Nat Commun ; 12(1): 2353, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883555

RESUMO

One key hypothesis explaining the fate of exotic species introductions posits that the establishment of a self-sustaining population in the invaded range can only succeed within conditions matching the native climatic niche. Yet, this hypothesis remains untested for individual release events. Using a dataset of 979 introductions of 173 mammal species worldwide, we show that climate-matching to the realized native climatic niche, measured by a new Niche Margin Index (NMI), is a stronger predictor of establishment success than most previously tested life-history attributes and historical factors. Contrary to traditional climatic suitability metrics derived from species distribution models, NMI is based on niche margins and provides a measure of how distant a site is inside or, importantly, outside the niche. Besides many applications in research in ecology and evolution, NMI as a measure of native climatic niche-matching in risk assessments could improve efforts to prevent invasions and avoid costly eradications.


Assuntos
Clima , Espécies Introduzidas , Mamíferos , Modelos Biológicos , Animais , Teorema de Bayes , Bases de Dados Factuais , Ecossistema , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA