Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 267: 116178, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295686

RESUMO

Cathepsin D (CD) is overexpressed in several types of cancer and constitutes an important biological target. Pepstatin A, a pentapeptide incorporating two non-proteinogenic statin residues, is among the most potent inhibitor of CD but lacks selectivity and suffers from poor bioavailability. Eight analogues of Pepstatin A, were synthesized, replacing residues in P3 or P1 position by non-canonical (S)- and (R)-α-Trifluoromethyl Alanine (TfmAla), (S)- and (R)-Trifluoromethionine (TFM) or non-natural d-Valine. The biological activities of those analogues were quantified on isolated CD and Pepsin by fluorescence-based assay (FRET) and cytotoxicity of the best fluorinated inhibitors was evaluated on SKOV3 ovarian cancer cell line. (R)-TFM based analog of Pepstatin A (compound 6) returned a sub-nanomolar IC50 against CD and an increased selectivity. Molecular Docking experiments could partially rationalize these results. Stabilized inhibitor 6 in the catalytic pocket of CD showed strong hydrophobic interactions of the long and flexible TFM side chain with lipophilic residues of S1 and S3 sub-pockets of the catalytic pocket. The newly synthesized inhibitors returned no cytotoxicity at IC50 concentrations on SKOV3 cancer cells, however the compounds derived from (S)-TfmAla and (R)-TFM led to modifications of cells morphologies, associated with altered organization of F-actin and extracellular Fibronectin.


Assuntos
Catepsina D , Metionina/análogos & derivados , Pepsina A , Pepstatinas/farmacologia , Pepstatinas/química , Simulação de Acoplamento Molecular , Alanina
2.
Methods Mol Biol ; 2529: 297-311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733021

RESUMO

Identification of histone lysine methyltransferase (HKMT) substrates has recently benefited from chemical-biology-based strategies in which artificial S-adenosyl-L-methionine (SAM) cofactors are engineered to allow substrate labeling using either the wild-type target enzyme or designed mutants. Once labeled, substrates can be selectively functionalized with an affinity tag, using a bioorthogonal ligation reaction, to allow their recovery from cell extracts and subsequent identification. In this chapter, we describe steps on how to proceed to set up such an approach to characterize substrates of specific HKMTs of the SET domain superfamily, from the characterization of the HKMT able to accommodate a SAM surrogate containing a bioorthogonal moiety, to the proteomic analysis conducted on a cell extract. We focus in particular on the controls that are necessary to ensure reliable proteomic data analysis. The example of PR-Set7 on which we have implemented this approach is shown.


Assuntos
Metionina , S-Adenosilmetionina , Histona-Lisina N-Metiltransferase/química , Domínios PR-SET , Proteômica , S-Adenosilmetionina/química
3.
Org Biomol Chem ; 20(9): 1974-1981, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179161

RESUMO

Trehalose-based probes are useful tools that allow the detection of the mycomembrane of mycobacteria through the metabolic labeling approach. Trehalose analogues conjugated to fluorescent probes can be used, and other probes are functionalized with a bioorthogonal chemical reporter for a two-step labeling approach. The synthesis of such trehalose-based probes mainly relies on the desymmetrization of natural trehalose using a large number of regioselective protection-deprotection steps to differentiate the eight hydroxyl groups. Herein, in order to avoid these time-consuming steps, we reinvestigated our previously reported tandem protocol mediated by FeCl3·6H2O, with the aim of modifying the ratio of the products to allow the challenging desymmetrization of the C2-symmetrical disaccharide trehalose. We demonstrate the usefulness of this method in providing easy access to trehalose analogues with a bioorthogonal moiety or a fluorophore in C-2, and also present their use in a one-step and two-step labeling approach, either of which can be used to study the mycomembrane in live mycobacteria.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Cloretos/farmacologia , Corynebacterium/efeitos dos fármacos , Compostos Férricos/farmacologia , Trealose/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cloretos/química , Compostos Férricos/química , Testes de Sensibilidade Microbiana , Trealose/síntese química , Trealose/química
4.
Chemistry ; 28(8): e202103887, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34890083

RESUMO

Oligomers of α-aminoisobutyric acid (Aib) are achiral peptides that adopt 310 helical structures with equal population of left- and right-handed conformers. The screw-sense preference of the helical chain may be controlled by a single chiral residue located at one terminus. 1 H and 19 F NMR, X-ray crystallography and circular dichroism studies on new Aib oligomers show that the incorporation of a chiral quaternary α-trifluoromethylalanine at their N-terminus induces a reversal of the screw-sense preference of the 310 -helix compared to that of a non-fluorinated analogue having an l-α-methyl valine residue. This work demonstrates that, among the many particular properties of introducing a trifluoromethyl group into foldamers, its stereo-electronic properties are of major interest to control the helical screw sense. Its use as an easy-to-handle 19 F NMR probe to reliably determine both the magnitude of the screw-sense preference and its sign assignment is also of remarkable interest.


Assuntos
Alanina , Parafusos Ósseos , Alanina/análogos & derivados , Dicroísmo Circular , Modelos Moleculares , Estrutura Secundária de Proteína
5.
Nat Commun ; 10(1): 2710, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221974

RESUMO

In animals and plants, the H3K9me3 and H3K27me3 chromatin silencing marks are deposited by different protein machineries. H3K9me3 is catalyzed by the SET-domain SU(VAR)3-9 enzymes, while H3K27me3 is catalyzed by the SET-domain Enhancer-of-zeste enzymes, which are the catalytic subunits of Polycomb Repressive Complex 2 (PRC2). Here, we show that the Enhancer-of-zeste-like protein Ezl1 from the unicellular eukaryote Paramecium tetraurelia, which exhibits significant sequence and structural similarities with human EZH2, catalyzes methylation of histone H3 in vitro and in vivo with an apparent specificity toward K9 and K27. We find that H3K9me3 and H3K27me3 co-occur at multiple families of transposable elements in an Ezl1-dependent manner. We demonstrate that loss of these histone marks results in global transcriptional hyperactivation of transposable elements with modest effects on protein-coding gene expression. Our study suggests that although often considered functionally distinct, H3K9me3 and H3K27me3 may share a common evolutionary history as well as a common ancestral role in silencing transposable elements.


Assuntos
Elementos de DNA Transponíveis/genética , Inativação Gênica , Histonas/genética , Paramecium tetraurellia/genética , Complexo Repressor Polycomb 2/metabolismo , Metilação de DNA , Processamento de Proteína Pós-Traducional/genética , Ativação Transcricional/genética
6.
Chem Commun (Camb) ; 55(31): 4566-4569, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30931466

RESUMO

A series of cyclic lipidated oligo-Arg cell penetrating peptides were synthesised with varied macrocycle size and lipid chain anchoring site. The study of their cellular uptake revealed different structural requirements to promote efficient glycosaminoglycan-dependent endocytosis and direct translocation.


Assuntos
Peptídeos Penetradores de Células/química , Glicosaminoglicanos/química , Sequência de Aminoácidos , Animais , Células CHO , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/metabolismo , Cricetinae , Cricetulus , Ciclização , Endocitose
7.
Anal Bioanal Chem ; 409(15): 3767-3777, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28389916

RESUMO

Histone lysine methylation is associated with essential biological functions like transcription activation or repression, depending on the position and the degree of methylation. This post-translational modification is introduced by protein lysine methyltransferases (KMTs) which catalyze the transfer of one to three methyl groups from the methyl donor S-adenosyl-L-methionine (AdoMet) to the amino group on the side chain of lysines. The regulation of protein lysine methylation plays a primary role not only in the basic functioning of normal cells but also in various pathologies and KMT deregulation is associated with diseases including cancer. These enzymes are therefore attractive targets for the development of new antitumor agents, and there is still a need for direct methodology to screen, identify, and characterize KMT inhibitors. We report here a simple and robust in vitro assay to quantify the enzymatic methylation of KMT by MALDI-TOF mass spectrometry. Following this protocol, we can monitor the methylation events over time on a peptide substrate. We detect in the same spectrum the modified and unmodified substrates, and the ratios of both signals are used to quantify the amount of methylated substrate. We first demonstrated the validity of the assay by determining inhibition parameters of two known inhibitors of the KMT SET7/9 ((R)-PFI-2 and sinefungin). Next, based on structural comparison with these inhibitors, we selected 42 compounds from a chemical library. We applied the MALDI-TOF assay to screen their activity as inhibitors of the KMT SET7/9. This study allowed us to determine inhibition constants as well as kinetic parameters of a series of SET7/9 inhibitors and to initiate a structure activity discussion with this family of compounds. This assay is versatile and can be easily adapted to other KMT substrates and enzymes as well as automatized.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adenosina/análogos & derivados , Adenosina/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação/efeitos dos fármacos , Pirrolidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/farmacologia , Tetra-Hidroisoquinolinas/farmacologia
8.
Anal Biochem ; 456: 25-31, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24747023

RESUMO

Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors.


Assuntos
Ensaios Enzimáticos/métodos , Histona-Lisina N-Metiltransferase/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Ensaios Enzimáticos/economia , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Concentração Inibidora 50 , Cinética , Metilação , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/economia , Fatores de Tempo
9.
J Biol Chem ; 287(40): 33607-14, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22869371

RESUMO

Clostridium botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins for humans and a major biothreat agent. Despite intense chemical efforts over the past 10 years to develop inhibitors of its catalytic domain (catBoNT/A), highly potent and selective inhibitors are still lacking. Recently, small inhibitors were reported to covalently modify catBoNT/A by targeting Cys(165), a residue located in the enzyme active site just above the catalytic zinc ion. However, no direct proof of Cys(165) modification was reported, and the poor accessibility of this residue in the x-ray structure of catBoNT/A raises concerns about this proposal. To clarify this issue, the functional role of Cys(165) was first assessed through a combination of site-directed mutagenesis and structural studies. These data suggested that Cys(165) is more involved in enzyme catalysis rather than in structural property. Then by peptide mass fingerprinting and x-ray crystallography, we demonstrated that a small compound containing a sulfonyl group acts as inhibitor of catBoNT/A through covalent modification of Cys(165). The crystal structure of this covalent complex offers a structural framework for developing more potent covalent inhibitors catBoNT/A. Other zinc metalloproteases can be founded in the protein database with a cysteine at a similar location, some expressed by major human pathogens; thus this work should find broader applications for developing covalent inhibitors.


Assuntos
Toxinas Botulínicas Tipo A/antagonistas & inibidores , Clostridium botulinum/metabolismo , Cisteína/química , Domínio Catalítico , Química Farmacêutica/métodos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/química , Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteína 25 Associada a Sinaptossoma/química , Zinco/química
11.
J Org Chem ; 74(21): 8433-6, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19788176

RESUMO

A straightforward synthesis of (S)- and (R)-N-Boc-5-oxo-piperazine-2-carboxylic acid is reported starting from L- or D-serine and ethyl glyoxylate. Those were evaluated as constituents in two tetrapeptides by studying their secondary structure by (1)H NMR spectroscopy. In the case of Boc-Val-(S)-PCA-Gly-Leu-OMe, two readily interconverting conformations (in a 40%:60% ratio) were observed, differing for the cis-trans isomerizaton of the tertiary amide bond, while Boc-Val-(R)-PCA-Gly-Leu-OMe displayed an equilibrium between a gamma-turn and a type II beta-turn conformation.


Assuntos
Ácidos Carboxílicos/síntese química , Mimetismo Molecular , Peptídeos/síntese química , Piperazinas/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA