Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 26(16): 2188-93, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27476595

RESUMO

Blood-feeding arthropods are vectors of infectious diseases such as dengue, Zika, Chagas disease, and malaria [1], and vector control is essential to limiting disease spread. Because these arthropods ingest very large amounts of blood, a protein-rich meal, huge amounts of amino acids are produced during digestion. Previous work on Rhodnius prolixus, a vector of Chagas disease, showed that, among all amino acids, only tyrosine degradation enzymes were overexpressed in the midgut compared to other tissues [2]. Here we demonstrate that tyrosine detoxification is an essential trait in the life history of blood-sucking arthropods. We found that silencing Rhodnius tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD), the first two enzymes of the phenylalanine/tyrosine degradation pathway, caused the death of insects after a blood meal. This was confirmed by using the HPPD inhibitor mesotrione, which selectively killed hematophagous arthropods but did not affect non-hematophagous insects. In addition, mosquitoes and kissing bugs died after feeding on mice that had previously received a therapeutic effective oral dose (1 mg/kg) of nitisinone, another HPPD inhibitor used in humans for the treatment of tyrosinemia type I [3]. These findings indicate that HPPD (and TAT) can be a target for the selective control of blood-sucking disease vector populations. Because HPPD inhibitors are extensively used as herbicides and in medicine, these compounds may provide an alternative less toxic to humans and more environmentally friendly than the conventional neurotoxic insecticides that are currently used, with the ability to affect only hematophagous arthropods.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/genética , Inativação Gênica , Proteínas de Insetos/genética , Rhodnius/genética , Tirosina Transaminase/genética , Tirosina/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Animais , Feminino , Inativação Metabólica , Proteínas de Insetos/metabolismo , Masculino , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Rhodnius/crescimento & desenvolvimento , Rhodnius/metabolismo , Tirosina Transaminase/metabolismo
2.
Vaccine ; 30(48): 6912-7, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22981764

RESUMO

The tick Rhipicephalus (Boophilus) microplus is a blood-sucking ectoparasite of cattle that severely impairs livestock production. Studies on tick immunological control address mostly single-antigen vaccines. However, from the commercial standpoint, so far no single-antigen vaccine has afforded appropriate protection against all R. microplus populations. In this context, multi-antigen cocktails have emerged as a way to enhance vaccine efficacy. In this work, a multi-antigenic vaccine against R. microplus was analyzed under field conditions in naturally infested cattle. The vaccine was composed by three tick recombinant proteins from two tick species that in previous single-vaccination reports provided partial protection of confined cattle against R. microplus infestations: vitellin-degrading cysteine endopeptidase (VTDCE) and boophilus yolk pro-cathepsin (BYC) from R. microplus, and glutathione S-transferase from Haemaphysalis longicornis (GST-Hl). Increased antibody levels against three proteins were recorded after immunizations, with a distinct humoral immune response dynamics for each protein. Compared to the control group, a statistically significant lower number of semi-engorged female ticks were observed in vaccinated cattle after two inoculations. This reduction persisted for 3 months, ranging from 35.3 to 61.6%. Furthermore, cattle body weight gain was significantly higher in vaccinated animals when compared to control cattle. Compared to the single-antigen vaccines composed by VTDCE, BYC or GST-Hl, this three-antigen vaccine afforded higher protection levels against R. microplus infestations.


Assuntos
Proteínas de Artrópodes/imunologia , Doenças dos Bovinos/prevenção & controle , Ectoparasitoses/veterinária , Rhipicephalus/imunologia , Vacinação/métodos , Vacinas/imunologia , Animais , Proteínas de Artrópodes/administração & dosagem , Bovinos , Ectoparasitoses/prevenção & controle , Feminino , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Vacinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA