Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 38(3): 1381-1399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217095

RESUMO

Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.


Assuntos
Brassicaceae , Doenças do Sistema Nervoso , Humanos , Verduras/química , Brassicaceae/química , Dieta , Compostos Fitoquímicos
2.
Parasite Epidemiol Control ; 17: e00244, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35243049

RESUMO

Malaria is one of the prevalent tropical diseases caused by the parasitic protozoan of the genus Plasmodium spp. With an estimated 228 million cases, it is a major public health concern with high incidence of morbidity and mortality worldwide. The emergence of drug-resistant parasites, inadequate vector control measures, and the non-availability of effective vaccine(s) against malaria pose a serious challenge to malaria eradication especially in underdeveloped and developing countries. Malaria treatment and control comprehensively relies on chemical compounds, which encompass various complications, including severe toxic effects, emergence of drug resistance, and high cost of therapy. To overcome the clinical failures of anti-malarial chemotherapy, a new drug development is of an immediate need. However, the drug discovery and development process is expensive and time consuming. In such a scenario, nanotechnological strategies may offer promising alternative approach for the treatment and control of malaria, with improved efficacy and safety. Nanotechnology based formulations of existing anti-malarial chemotherapeutic agents prove to exceed the limitations of existing therapies in relation to optimum therapeutic benefits, safety, and cost effectiveness, which indeed advances the patient's compliance in treatment. In this review, the shortcomings of malaria therapeutics and necessity of nanotechnological strategies for treating malaria were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA