Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563310

RESUMO

Resources are needed for growth, reproduction and survival, and organisms must trade off limited resources among competing processes. Nutritional availability in organisms is sensed and monitored by nutrient-sensing pathways that can trigger physiological changes or alter gene expression. Previous studies have proposed that one such signalling pathway, the mechanistic target of rapamycin (mTOR), underpins a form of adaptive plasticity when individuals encounter constraints in their energy budget. Despite the fundamental importance of this process in evolutionary biology, how nutritional limitation is regulated through the expression of genes governing this pathway and its consequential effects on fitness remain understudied, particularly in birds. We used dietary restriction to simulate resource depletion and examined its effects on body mass, reproduction and gene expression in Japanese quails (Coturnix japonica). Quails were subjected to feeding at 20%, 30% and 40% restriction levels or ad libitum for 2 weeks. All restricted groups exhibited reduced body mass, whereas reductions in the number and mass of eggs were observed only under more severe restrictions. Additionally, dietary restriction led to decreased expression of mTOR and insulin-like growth factor 1 (IGF1), whereas the ribosomal protein S6 kinase 1 (RPS6K1) and autophagy-related genes (ATG9A and ATG5) were upregulated. The pattern in which mTOR responded to restriction was similar to that for body mass. Regardless of the treatment, proportionally higher reproductive investment was associated with individual variation in mTOR expression. These findings reveal the connection between dietary intake and the expression of mTOR and related genes in this pathway.


Assuntos
Coturnix , Reprodução , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Coturnix/fisiologia , Coturnix/genética , Reprodução/fisiologia , Feminino , Masculino , Restrição Calórica , Dieta/veterinária
2.
J Comp Physiol B ; 194(2): 179-189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520538

RESUMO

Embryonic development is one of the most sensitive and critical stages when maternal effects may influence the offspring's phenotype. In birds and other oviparous species, embryonic development is confined to the eggs, therefore females must deposit resources into the eggs to prepare the offspring for the prevailing post-natal conditions. However, the mechanisms of such phenotypic adjustments remain poorly understood. We simulated a maternal nutritional transfer by injecting 1 mg of L-methionine solution into Japanese quail eggs before the onset of incubation. The increase in early methionine concentration in eggs activated the insulin/insulin-like signalling and mechanistic target of rapamycin (IIS/mTOR) signalling pathways and affected post-natal developmental trajectories. Chicks from methionine-supplemented eggs had higher expression of liver IGF1 and mTOR genes at hatching but were similar in size, and the phenotypic effects of increased growth became apparent only a week later and remained up to three weeks. Circulating levels of insulin-like growth factor-1 (IGF-1) and expression of ribosomal protein serine 6 kinase 1 (RPS6K1), the mTOR downstream effector, were elevated only three weeks after hatching. These results show that specific nutritional cues may have phenotypic programming effects by sequentially activating specific nutrient-sensing pathways and achieving transgenerational phenotypic plasticity.


Assuntos
Coturnix , Fator de Crescimento Insulin-Like I , Metionina , Serina-Treonina Quinases TOR , Animais , Metionina/administração & dosagem , Metionina/farmacologia , Coturnix/crescimento & desenvolvimento , Coturnix/embriologia , Coturnix/metabolismo , Coturnix/genética , Feminino , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Transdução de Sinais , Fígado/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Insulina/sangue , Insulina/metabolismo , Embrião não Mamífero
3.
Sci Rep ; 14(1): 4387, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388769

RESUMO

Methionine (Met) plays a substantial role in poultry due to its involvement in several pathways, including enhancing antioxidant status and improving growth performance and health status. This study examined how in ovo feeding of Met affects hatching performance, antioxidant status, and hepatic gene expression related to growth and immunity in the TETRA-SL LL hybrid (TSL) commercial layer and Hungarian partridge colored hen (HPC) indigenous genotypes. The eggs were injected with saline, DL-Met, and L-Met on 17.5 days of embryonic development. The results showed that the in ovo feeding of DL-Met significantly increased the hatching weight and ferric reducing the ability of the plasma (FRAP) compared with L-Met. The in ovo feeding of either Met source enhanced the liver health and function and hepatic antioxidant status of the chicks. The genotype's differences were significant; the TSL genotype had better hatching weight, an antioxidant defense system, and downregulated growth-related gene expression than the HPC genotype. In ovo feeding of either Met source enhanced the chicks' health status and antioxidant status, and DL-Met improved the hatching weight of the chicks more than L-Met. Genotype differences were significantly evident in the responses of growth performance, antioxidant status, blood biochemical parameters, and gene expression to Met sources.


Assuntos
Antioxidantes , Galinhas , Animais , Feminino , Antioxidantes/metabolismo , Galinhas/metabolismo , Metionina/metabolismo , Hungria , Racemetionina/metabolismo , Expressão Gênica
4.
Anim Nutr ; 16: 218-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362512

RESUMO

Methionine (Met) is an essential and first limiting amino acid in the poultry diet that plays a significant role in chicken embryonic development and growth. The present study examined the effect of in ovo injection of DL-Met and L-Met sources and genotypes on chicken embryonic-intestinal development and health. Fertilized eggs of the two genotypes, TETRA-SL layer hybrid (TSL) - commercial layer hybrid and Hungarian Partridge colored hen breed (HPC) - a native genotype, were randomly distributed into four treatments for each genotype. The treatment groups include the following: 1) control non-injected eggs (NoIn); 2) saline-injected (SaIn); 3) DL-Met injected (DLM); and 4) L-Met injected (LM). The in ovo injection was carried out on 17.5 d of embryonic development; after hatching, eight chicks per group were sacrificed, and the jejunum was extracted for analysis. The results showed that both DLM and LM groups had enhanced intestinal development as evidenced by increased villus width, villus height, and villus area (P < 0.05) compared to the control. The DLM group had significantly reduced crypt depth, glutathione content (GSH), glutathione S-transferase 3 alpha (GST3), occludin (OCLN) gene expression and increased villus height to crypt depth ratio in the TSL genotype than the LM group (P < 0.05). The HPC genotype has overexpressed insulin-like growth factor 1 (IGF1) gene, tricellulin (MD2), occludin (OCLN), superoxide dismutase 1 (SOD1), and GST3 genes than the TSL genotype (P < 0.05). In conclusion, these findings showed that in ovo injection of Met enhanced intestinal development, and function, with genotypes responding differently under normal conditions. Genotypes also influenced the expression of intestinal antioxidants, tight junction, and growth-related genes.

5.
Arch Anim Breed ; 66(1): 103-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37312865

RESUMO

Due to the legislation of antibiotic usage, natural substances are required for application in the poultry industry. Because of their potential anti-inflammatory and immunomodulatory effects, carotenoids are great sources. Capsanthin, a major carotenoid giving the red color of pepper, is a promising feed additive, as it can reduce chronic inflammation. This study was conducted to determine the effects of capsanthin supplementation at 80 mg kg-1 in feed on the immune response of broiler chickens under Escherichia coli O55:B5 lipopolysaccharide (LPS) challenge. Ross 308 male broilers were divided into treatments: control (basal diet) and feed-supplemented groups. At 42 d of age, chickens were weighed and then challenged with 1 mg LPS per kilogram of body weight intraperitoneally. Four hours after injection, birds were euthanized, and then spleen and blood samples were collected. Capsanthin supplement at 80 mg kg-1 did not change the growth parameters and the relative spleen weight. LPS immunization resulted in higher splenic interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interferon-γ (IFN-γ) mRNA expressions. Capsanthin addition reached lower gene expression levels of IL-6 and IFN-γ compared to the LPS-injected birds. At plasma level, dietary capsanthin resulted in lower IL-1ß and IL-6 levels. These results may indicate the potential anti-inflammatory effect of capsanthin supplementation in broiler chickens.

6.
Animals (Basel) ; 12(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35739894

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic and multifunctional neuropeptide; it takes part in the regulation of various physiological processes, such as feeding, reproduction, catecholamine synthesis, thermoregulation, motor activity, brain development and neuronal survival. Since PACAP plays important regulatory roles, we hypothesized that the level of PACAP in blood is associated with expression of other proteins, which are involved in different metabolic pathways. The objective of the present study was to compare plasma protein profiles of cows with high and low plasma PACAP levels. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed by tryptic digestion and protein identification by liquid chromatography−mass spectrometry (LC-MS). A total of 210 protein spots were detected, and 16 protein spots showed statistically significant differences (p < 0.05) in the expression levels between groups. Ten spots showed a higher intensity in the high-PACAP-concentration group, while six spots were more abundant in the low-PACAP-concentration group. The functions of the differentially expressed proteins indicate that the PACAP level of plasma is related to the lipid metabolism and immune status of cattle.

7.
Brain Behav Immun ; 84: 218-228, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821847

RESUMO

Chronic stress is often accompanied by gastrointestinal symptoms, which might be due to stress-induced shift of gut microbiome to pathogenic bacteria. It has been hypothesized that stress alters gut permeability and results in mild endotoxemia which exaggerates HPA activity and contributes to anxiety and depression. To reveal the relationship between microbiome composition, stress-induced gastrointestinal functions and behavior, we treated chronically stressed mice with non-absorbable antibiotic, rifaximin. The "two hits" stress paradigm was used, where newborn mice were separated from their mothers for 3 h daily as early life adversity (maternal separation, MS) and exposed to 4 weeks chronic variable stress (CVS) as adults. 16S rRNA based analysis of gut microbiome revealed increases of Bacteroidetes and Proteobacteria and more specifically, Clostridium species in chronically stressed animals. In mice exposed to MS + CVS, we found extenuation of colonic mucosa, increased bacterial translocation to mesenteric lymph node, elevation of plasma LPS levels and infiltration of F4/80 positive macrophages into the colon lamina propria. Chronically stressed mice displayed behavioral signs of anxiety-like behavior and neophobia. Rifaximin treatment decreased Clostridium concentration, gut permeability and LPS plasma concentration and increased colonic expression of tight junction proteins (TJP1, TJP2) and occludin. However, these beneficial effects of rifaximin in chronically stressed mice was not accompanied by positive changes in behavior. Our results suggest that non-absorbable antibiotic treatment alleviates stress-induced local pathologies, however, does not affect stress-induced behavior.


Assuntos
Microbioma Gastrointestinal , Microbiota , Rifaximina , Animais , Antibacterianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Privação Materna , Camundongos , Permeabilidade/efeitos dos fármacos , RNA Ribossômico 16S/genética , Rifaximina/farmacologia , Estresse Fisiológico/efeitos dos fármacos
8.
PeerJ ; 7: e6588, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941268

RESUMO

The small intestine is the longest part of the chicken (Gallus gallus) gastrointestinal system that is specialized for nutrient absorption. It is known that decrease in intestinal villi area or height in early age can cause a reduction in essential nutrient intake, which may lead to delayed growth and consequently poorer performance of broiler chickens. The small intestinal absorptive surface is known to be affected by various factors, among others things the nutritional state. In our experiment, we aimed to investigate the possible protein expression alterations that lie behind the villus area and height decrease caused by feed deprivation. A total of 24 chickens were divided into three groups, namely ad libitum fed, fasted for 24 h, fasted for 24 h then refed for 2 h. The morphometric parameters were also measured in the duodenum, jejunum and ileum tissue sections using image analysis. Differential proteome analyses from jejunum samples were performed using two-dimensional difference gel electrophoresis followed by tryptic digestion and protein identification by matrix-assisted laser desorption/ionization mass spectrometry. Overall 541 protein spots were detected after 2D. Among them, eleven showed 1.5-fold or higher significant difference in expression and were successfully identified. In response to 24 h fasting, the expression of nine proteins was higher and that of two proteins was lower compared to the ad libitum fed group. The functions of the differentially expressed proteins indicate that the 24 h fasting mainly affects the expression of structural proteins, and proteins involved in lipid transport, general stress response, and intestinal defense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA