Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(5): 1224-1237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38050338

RESUMO

Immune checkpoint blocking therapy targeting the PD-1/PD-L1 inhibitory signalling pathway has produced encouraging results in the treatment of a variety of cancers. Durvalumab (Imfinzi®) targeting PD-L1 is currently used for immunotherapy of several tumour malignancies. The Fc region of this IgG1 antibody has been engineered to reduce FcγR interactions with the aim of enhancing blockade of PD-1/PD-L1 interactions without the depletion of PD-L1-expressing immune cells. Here, we used Nicotiana benthamiana to produce four variants of Durvalumab (DL): wild-type IgG1 and its 'Fc-effector-silent' variant (LALAPG) carrying further modifications to increase antibody half-life (YTE); IgG4S228P and its variant (PVA) with Fc mutations to decrease binding to FcγRI. In addition, DL variants were produced with two distinct glycosylation profiles: afucosylated and decorated with α1,6-core fucose. Plant-derived DL variants were compared to the therapeutic antibody regarding their ability to (i) bind to PD-L1, (ii) block PD-1/PD-L1 inhibitory signalling and (iii) engage with the neonatal Fc receptor (FcRn) and various Fcγ receptors. It was found that plant-derived DL variants bind to recombinant PD-L1 and to PD-L1 expressed in gastrointestinal cancer cells and are able to effectively block its interaction with PD-1 on T cells, thereby enhancing their activation. Furthermore, we show a positive impact of Fc amino acid mutations and core fucosylation on DL's therapeutic potential. Compared to Imfinzi®, DL-IgG1 (LALAPG) and DL-IgG4 (PVA)S228P show lower affinity to CD32B inhibitory receptor which can be therapeutically favourable. Importantly, DL-IgG1 (LALAPG) also shows enhanced binding to FcRn, a key determinant of serum half-life of IgGs.


Assuntos
Anticorpos Monoclonais , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/genética , Imunoglobulina G/genética
2.
Nat Commun ; 14(1): 7804, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016944

RESUMO

Interactions of membrane-resident proteins are important targets for therapeutic interventions but most methods to study them are either costly, laborious or fail to reflect the physiologic interaction of membrane resident proteins in trans. Here we describe highly sensitive cellular biosensors as a tool to study receptor-ligand pairs. They consist of fluorescent reporter cells that express chimeric receptors harboring ectodomains of cell surface molecules and intracellular signaling domains. We show that a broad range of molecules can be integrated into this platform and we demonstrate its applicability to highly relevant research areas, including the characterization of immune checkpoints and the probing of cells for the presence of receptors or ligands. The platform is suitable to evaluate the interactions of viral proteins with host receptors and to test for neutralization capability of drugs or biological samples. Our results indicate that cellular biosensors have broad utility as a tool to study protein-interactions.


Assuntos
Técnicas Biossensoriais , Transdução de Sinais , Ligantes , Membrana Celular/metabolismo , Ligação Proteica , Proteínas de Membrana/metabolismo
3.
Scand J Immunol ; 91(4): e12862, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31889332

RESUMO

CRISPR/Cas9 is a powerful gene-editing tool allowing for specific gene manipulation at targeted sites in the genome. Here, we used CRISPR/Cas9-mediated gene editing to introduce single amino acid mutations into proteins involved in T cell receptor signalling pathways. Knock-in mutations were introduced in Jurkat T cells by homologous directed repair using single-stranded oligodeoxynucleotides. Specifically, we aimed to create targeted mutations at two loci within LCK, a constitutively expressed gene, and at three loci within SH2D2A, whose expression is induced upon T cell activation. Here, we present a simple workflow that can be applied by any laboratory equipped for cell culture work, utilizing basic flow cytometry, Western blotting and PCR techniques. Our data reveal that gene editing may be locus-dependent and can vary between target sites, also within a gene. In our two targeted genes, on average 2% of the clones harboured homozygous mutations as assessed by allele-specific PCR and subsequent sequencing. We highlight the importance of decreasing the clonal heterogeneity and developing robust screening methods to accurately select for correct knock-in mutations. Our workflow may be employed in other immune cell lines and acts as a useful approach for decoding functional mechanisms of proteins of interest.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Técnicas de Introdução de Genes/métodos , Linfócitos T , Fluxo de Trabalho , Humanos , Células Jurkat , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA