Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Parasite ; 29: 45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200781

RESUMO

Accurate identification of insect species is an indispensable and challenging requirement for every entomologist, particularly if the species is involved in disease outbreaks. The European MediLabSecure project designed an identification (ID) exercise available to any willing participant with the aim of assessing and improving knowledge in mosquito taxonomy. The exercise was based on high-definition photomicrographs of mosquitoes (26 adult females and 12 larvae) collected from the western Palaearctic. Sixty-five responses from Europe, North Africa and the Middle East were usable. The study demonstrated that the responders were better at identifying females (82% correct responses) than larvae (63%). When the responders reported that they were sure of the accuracy of their ID, the success rate of ID increased (92% for females and 88% for larvae). The top three tools used for ID were MosKeyTool (72% of responders), the ID key following Becker et al. [2010. Mosquitoes and their control, 2nd edn. Berlin: Springer] (38%), and the CD-ROM of Schaffner et al. [2001. Les moustiques d'Europe: logiciel d'identification et d'enseignement - The mosquitoes of Europe: an identification and training programme. Montpellier: IRD; EID] (32%), while other tools were used by less than 10% of responders. Responders reporting the identification of mosquitoes using the MosKeyTool were significantly better (80% correct responses) than non-MosKeyTool users (69%). Most responders (63%) used more than one ID tool. The feedback from responders in this study was positive, with the exercise being perceived as halfway between educational training and a fun quiz. It raised the importance of further expanding training in mosquito ID for better preparedness of mosquito surveillance and control programmes.


Title: Évaluation de l'expertise en identification morphologique des espèces de moustiques (Diptera, Culicidae) à l'aide de photomicrographies. Abstract: L'identification précise des espèces d'insectes est une exigence indispensable et difficile pour tout entomologiste, en particulier si l'espèce est impliquée dans des épidémies. Le projet européen MediLabSecure a conçu un exercice d'identification (ID) accessible à tout participant volontaire dans le but d'évaluer et d'améliorer les connaissances en taxonomie des moustiques. L'exercice était basé sur des photomicrographies haute définition de moustiques (26 femelles adultes et 12 larves) prélevées dans le Paléarctique occidental. Soixante-cinq réponses d'Europe, d'Afrique du Nord et du Moyen-Orient ont été utilisables. L'étude a démontré que les répondants étaient meilleurs pour identifier les femelles (82 % de réponses correctes) que les larves (63 %). Lorsque les répondants ont déclaré être sûrs de l'exactitude de leur ID, le taux de réussite de l'identification était meilleur (92 % pour les femelles et 88 % pour les larves). Les trois principaux outils utilisés pour les ID étaient MosKeyTool (72 % des répondants), la clé d'identification du livre de Becker et al. (38%) et le CD-ROM de Schaffner et al. (32 %), tandis que d'autres outils étaient utilisés par moins de 10 % des répondants. Les répondants déclarant identifier des moustiques à l'aide de MosKeyTool étaient significativement meilleurs (80 % de réponses correctes) que les non-utilisateurs de MosKeyTool (69 %). La plupart des répondants (63 %) ont utilisé plus d'un outil d'identification. Les commentaires des répondants de cette étude ont été positifs, l'exercice étant perçu comme à mi-chemin entre une formation pédagogique et un quiz amusant. Il a souligné l'importance d'étendre la formation complémentaire à l'identification des moustiques pour une meilleure préparation des programmes de surveillance et de contrôle des moustiques.


Assuntos
Culicidae , África do Norte , Animais , Surtos de Doenças , Europa (Continente) , Feminino , Humanos , Larva , Mosquitos Vetores
2.
Sci Rep ; 12(1): 11587, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804074

RESUMO

Various environmental drivers influence life processes of insect vectors that transmit human disease. Life histories observed under experimental conditions can reveal such complex links; however, designing informative experiments for insects is challenging. Furthermore, inferences obtained under controlled conditions often extrapolate poorly to field conditions. Here, we introduce a pseudo-stage-structured population dynamics model to describe insect development as a renewal process with variable rates. The model permits representing realistic life stage durations under constant and variable environmental conditions. Using the model, we demonstrate how random environmental variations result in fluctuating development rates and affect stage duration. We apply the model to infer environmental dependencies from the life history observations of two common disease vectors, the southern (Culex quinquefasciatus) and northern (Culex pipiens) house mosquito. We identify photoperiod, in addition to temperature, as pivotal in regulating larva stage duration, and find that carefully timed life history observations under semi-field conditions accurately predict insect development throughout the year. The approach we describe augments existing methods of life table design and analysis, and contributes to the development of large-scale climate- and environment-driven population dynamics models for important disease vectors.


Assuntos
Culex , Culicidae , Animais , Clima , Culex/fisiologia , Humanos , Mosquitos Vetores , Dinâmica Populacional
3.
Parasit Vectors ; 13(1): 573, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176888

RESUMO

BACKGROUND: Sand flies (Diptera: Psychodidae) are medically important vectors of human and veterinary disease-causing agents. Among these, the genus Leishmania (Kinetoplastida: Trypanosomatidae), and phleboviruses are of utmost importance. Despite such significance, updated information about sand fly fauna is missing for Balkan countries where both sand flies and autochtonous leishmaniases are historically present and recently re-emerging. Therefore, a review of historical data on sand fly species composition and distribution in the region was followed by a large-scale entomological survey in eight Balkan countries to provide a recent update on local sand fly fauna. METHODS: The literature search involved the period 1910-2019. The entomological survey was conducted at 1189 sampling stations in eight countries (Bulgaria, Bosnia and Herzegovina, Croatia, Kosovo, Montenegro, North Macedonia, Serbia and Slovenia), covering 49 settlements and 358 sampling sites between June and October in the years 2014 and 2016, accumulating 130 sampling days. We performed a total of 1189 trapping nights at these stations using two types of traps (light and CO2 attraction traps) in each location. Sampling was performed with a minimal duration of 6 (Montenegro) and a maximal of 47 days (Serbia) between 0-1000 m.a.s.l. Collected sand flies were morphologically identified. RESULTS: In total, 8490 sand fly specimens were collected. Morphological identification showed presence of 14 species belonging to genera Phlebotomus and Sergentomyia. Historical data were critically reviewed and updated with our recent findings. Six species were identified in Bosnia and Herzegovina (2 new records), 5 in Montenegro (2 new records), 5 in Croatia (2 new records), 9 in Bulgaria (5 new records), 11 in North Macedonia (1 new record), 10 in Serbia (no new records), 9 in Kosovo (3 new records) and 4 in Slovenia (no new records). CONCLUSIONS: This study presents results of the first integrated sand fly fauna survey of such scale for the Balkan region, providing first data on sand fly populations for four countries in the study area and presenting new species records for six countries and updated species lists for all surveyed countries. Our findings demonstrate presence of proven and suspected vectors of several Leishmania species.


Assuntos
Distribuição Animal , Psychodidae/classificação , Animais , Península Balcânica , Feminino , Insetos Vetores/classificação , Insetos Vetores/parasitologia , Leishmaniose/transmissão , Masculino , Psychodidae/parasitologia
4.
Parasite ; 26: 55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31489838

RESUMO

The rapid spread and settlement of Aedes albopictus mosquitoes across at least 28 countries in Europe, as well as several countries in Asia Minor, the Middle East and Africa, has made it one of the most invasive species of all time. Even though the biology of Ae. albopictus in its native tropical environment has been documented for a long time, the biology and ecology of this species in newly colonized temperate environments remain poorly known despite its important role as a vector for about twenty arboviruses. In this context, the main goals of this work were to investigate Ae. albopictus phenotypic variations at a local scale in Albania, the country where Ae. albopictus was first recorded in Europe, and to determine if its phenotypes could be affected by altitude. Analysis of Ae. albopictus wing phenotypes was performed using a geometric morphometric approach. We observed shape and size variations among altitudinal populations of Ae. albopictus. Differences of wing phenotypes were highlighted between altitude groups for male and female mosquitoes. The phenotypic variations observed in Ae. albopictus between altitudinal groups indicated these populations are exposed to environmental and ecological pressures. These results suggest the presence of phenotypic plasticity in this species.


TITLE: Variations phénotypiques des ailes d'Aedes albopictus (Diptera, Culicidae) en fonction de l'altitude en Albanie, la région où il a été signalé pour la première fois en Europe. ABSTRACT: La propagation et l'établissement rapides du moustique Aedes albopictus dans au moins 28 pays d'Europe, ainsi que dans plusieurs pays d'Asie mineure, du Moyen-Orient et d'Afrique, en ont fait l'une des espèces les plus invasives de tous les temps. Bien que la biologie d'Ae. albopictus dans son milieu tropical naturel soit documentée depuis longtemps, la biologie et l'écologie de cette espèce dans les milieux tempérés nouvellement colonisés restent mal connues malgré son rôle important de vecteur d'une vingtaine d'arbovirus. Dans ce contexte, les principaux objectifs de ce travail étaient d'étudier les variations phénotypiques d'Ae. albopictus à l'échelle locale en Albanie, le pays où Ae. albopictus a été signalé pour la première fois en Europe, et de déterminer si ses phénotypes pourraient être affectés par l'altitude. L'analyse des phénotypes des ailes d'Ae. albopictus a été effectuée en utilisant une approche de morphométrie géométrique. Nous avons observé des variations de forme et de taille parmi les populations altitudinales d'Ae. albopictus. Des différences de phénotypes d'ailes ont été mises en évidence entre les groupes d'altitude pour les moustiques mâles et femelles. Les variations phénotypiques observées chez Ae. albopictus entre les groupes altitudinaux indiquent que ces populations sont exposées à des pressions environnementales et écologiques. Ces résultats suggèrent la présence d'une plasticité phénotypique chez cette espèce.


Assuntos
Aedes/anatomia & histologia , Altitude , Asas de Animais/anatomia & histologia , Albânia , Animais , Feminino , Espécies Introduzidas , Masculino
5.
PLoS Negl Trop Dis ; 13(6): e0007314, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194743

RESUMO

BACKGROUND: The Mediterranean Basin is historically a hotspot for trade, transport, and migration. As a result, countries surrounding the Mediterranean Sea share common public health threats. Among them are vector-borne diseases, and in particular, mosquito-borne viral diseases are prime candidates as (re)emerging diseases and are likely to spread across the area. Improving preparedness and response capacities to these threats at the regional level is therefore a major issue. The implementation of entomological surveillance is, in particular, of utmost importance. Guidance in designing entomological surveillance systems is critical, and these systems may pursue different specific objectives depending on the disease. The purpose of the proposed review is to draw up guidelines for designing effective and sustainable entomological surveillance systems in order to improve preparedness and response. However, we make it clear that there is no universal surveillance system, so the thinking behind harmonisation is to define evidence-based standards in order to promote best practises, identify the most appropriate surveillance activities, and optimise the use of resources. Such guidance is aimed at policymakers and diverse stakeholders and is intended to be used as a framework for the implementation of entomological surveillance programmes. It will also be useful to collaborate and share information with health professionals involved in other areas of disease surveillance. Medical entomologists and vector control professionals will be able to refer to this report to advocate for tailored entomological surveillance strategies. The main threats targeted in this review are the vectors of dengue virus, chikungunya virus, Zika virus, West Nile virus, and Rift Valley fever virus. The vectors of all these arboviruses are mosquitoes. METHODS: Current knowledge on vector surveillance in the Mediterranean area is reviewed. The analysis was carried out by a collaboration of the medical entomology experts in the region, all of whom belong to the MediLabSecure network, which is currently funded by the European Union and represents an international effort encompassing 19 countries in the Mediterranean and Black Sea region. FINDINGS: Robust surveillance systems are required to address the globalisation of emerging arboviruses. The prevention and management of mosquito-borne viral diseases must be addressed in the prism of a One Health strategy that includes entomological surveillance as an integral part of the policy. Entomological surveillance systems should be designed according to the entomological and epidemiological context and must have well-defined objectives in order to effect a tailored and graduated response. We therefore rely on different scenarios according to different entomological and epidemiological contexts and set out detailed objectives of surveillance. The development of multidisciplinary networks involving both academics and public authorities will provide resources to address these health challenges by promoting good practises in surveillance (identification of surveillance aims, design of surveillance systems, data collection, dissemination of surveillance results, evaluation of surveillance activities) and through the sharing of effective knowledge and information. These networks will also contribute to capacity building and stronger collaborations between sectors at both the local and regional levels. Finally, concrete guidance is offered on the vector of the main arbovirus based on the current situation in the area.


Assuntos
Transmissão de Doença Infecciosa , Monitoramento Epidemiológico , Insetos Vetores/crescimento & desenvolvimento , Insetos Vetores/virologia , Viroses/transmissão , Vírus/isolamento & purificação , Animais , Humanos , Insetos Vetores/classificação , Região do Mediterrâneo , Vírus/classificação
6.
PLoS Negl Trop Dis ; 13(5): e0007334, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31059502

RESUMO

BACKGROUND: The recent reports of Aedes aegypti and Ae. albopictus populations in Turkey, in parallel with the territorial expansion identified in several surrounding countries, have raised concerns about the establishment and re-establishment of these invasive Aedes mosquitoes in Turkey. This cross-sectional study was performed to detect Aedes aegypti and Ae. albopictus in regions of recent incursions, and screen for viral pathogens known to be transmitted elsewhere by these species. METHODOLOGY: Mosquitoes were collected at several locations in Artvin, Rize and Trabzon provinces of the Black Sea region during 2016-2017, identified morphologically, pooled and analyzed via generic or specific nucleic acid amplification assays. Viruses in positive pools were identified by product sequencing, cell culture inoculation and next generation sequencing (NGS) in selected specimens. PRINCIPAL FINDINGS: The study group comprised 791 specimens. Aedes albopictus was the most abundant species in all locations (89.6%), followed by Ae. aegypti (7.8%) and Culex pipiens (2.5%). Mosquitoes were screened for viruses in 65 pools where fifteen (23.1%) were reactive. The infecting strains was identified as West Nile virus (WNV) in 5 pools (7.7%) with Ae. albopictus or Cx. pipiens mosquitoes. The obtained WNV sequences phylogenetically grouped with local and global lineage 1 clade 1a viruses. In 4 (6.2%) and 6 (9.2%) pools, respectively, cell fusing agent virus (CFAV) and Aedes flavivirus (AEFV) sequences were characterized. NGS provided a near-complete AEFV genome in a pool of Ae. albopictus. The strain is provisionally called "AEFV-Turkey", and functional analysis of the genome revealed several conserved motifs and regions associated with virus replication. Merida-like virus Turkey (MERDLVT), a recently-described novel rhabdovirus, was also co-detected in a Cx. pipiens pool also positive for WNV. CONCLUSIONS/SIGNIFICANCE: Invasive Aedes mosquitoes are established in certain locations of northeastern Turkey. Herein we conclusively show the role of these species in WNV circulation in the region. Biosurveillance is imperative to monitor the spread of these species further into Asia Minor and to detect possible introduction of pathogens.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/isolamento & purificação , Aedes/classificação , Animais , Estudos Transversais , Feminino , Flavivirus/classificação , Flavivirus/genética , Flavivirus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mosquitos Vetores/classificação , Filogenia , Especificidade da Espécie , Turquia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/genética
7.
J Vector Ecol ; 44(1): 94-104, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31124243

RESUMO

The aim of this study is to identify the mosquito species that currently exist and their distributions in Kosovo in order to determine current potential endemic zones and areas at a higher risk for future epidemics. These scientific data will be shared with public health authorities for implementing mosquito control programs. During a two-year period of monitoring in 48 localities in 23 provinces in Kosovo, a total of 1,604 mosquitoes representing 13 species and six genera were collected and morphologically identified. Members of species complexes were also classified to species using DNA barcoding. In total, 13 species were identified with Culex pipiens s.l., the predominant species with an abundance rate of 39%. The remaining 12 species identified were grouped into five genera: Anopheles, Aedes, Coquillettidia, Culiseta, Uranotaenia, including species that are vectors of arboviruses in other parts of the world.


Assuntos
Distribuição Animal , Biodiversidade , Culicidae/classificação , Culicidae/fisiologia , Animais , Kosovo , Especificidade da Espécie
8.
Parasit Vectors ; 11(1): 553, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352609

RESUMO

BACKGROUND: Identification of vectors is of prime importance in the field of medical entomology for both operational and research purposes. An external quality assessment of mosquito identification capacities was carried out within the MediLabSecure Network, which is composed of laboratories located in 19 countries close to the European Union around the Mediterranean and Black seas. METHODS: A set of blind samples consisting of 7 or 8 adult mosquitoes and 4 larvae was given to each participant laboratory. In all, 138 adult mosquitoes and 76 larvae of different species were distributed for genus and species identification. RESULTS: All identifications were exclusively morphology based. Overall, 81% of identifications were correct at the genus level, 64% at the species level. The results were highly varied among the 19 participating laboratories. The levels of correct identifications were: 100% (three laboratories), 90-95% (four laboratories), 50-75% (six laboratories) and < 50% (six laboratories). CONCLUSIONS: This evaluation showed the need to maintain efforts in capacity building and quality control in the field of medical entomology and, more specifically, in the morphological identification of the Culicidae.


Assuntos
Culicidae/classificação , Animais , Feminino , Laboratórios/normas , Masculino , Controle de Qualidade
9.
Parasit Vectors ; 11(1): 462, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103828

RESUMO

BACKGROUND: The prime significance of species belonging to the genus Culicoides Latreille, 1809 (Diptera: Ceratopogonidae) is their ability to transmit viruses such as bluetongue virus (BTV) to wild and domestic ruminants. Prior to 1998, BTV was considered exotic in Europe, but according to recent history of its outbreaks, it has become endemic in southern and eastern European countries circulating beyond its expected historical limits, into the Balkan region. The wind-borne long-distance dispersal of Culicoides spp. over water bodies and local spreading between farms emphasize the necessity of filling in the information gaps regarding vector species distribution. In most Balkan countries, data on Culicoides fauna and species distribution are lacking, or information is old and scarce. RESULTS: During this study, 8586 specimens belonging to 41 species were collected. We present the first faunistic data on Culicoides species in the former Yugoslav Republic of Macedonia (FYROM), Kosovo, Montenegro and Serbia. For other countries (Bosnia and Herzegovina, Bulgaria and Croatia), all historical records were compiled for the first time and then expanded with our findings to various extents. In all countries, confirmed or suspected BTV vector species belonging to the subgenera Avaritia and Culicoides were collected. The total number of species sampled during our field collections was 20 in Bosnia and Herzegovina (15 new records), 10 in Bulgaria (2 new records), 10 in Croatia (5 new records), 13 in FYROM, 9 in Kosovo, 15 in Montenegro, and 28 in Serbia. Of these, 14 species were registered for the first time in this part of the Balkans. CONCLUSIONS: This paper provides the first data about Culicoides fauna in FYROM, Kosovo, Montenegro and Serbia, as well as new records and an update on the checklists for Bosnia and Herzegovina, Bulgaria and Croatia. These findings provide preliminary insights into the routes of BTV introduction and spreading within the Balkans, and present a valuable contribution to further research related to Culicoides-borne diseases in Europe.


Assuntos
Distribuição Animal , Ceratopogonidae/classificação , Animais , Ceratopogonidae/fisiologia , Europa Oriental
10.
Parasit Vectors ; 11(1): 198, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558974

RESUMO

BACKGROUND: Wolbachia are maternally transmitted bacteria that can manipulate their hosts' reproduction causing cytoplasmic incompatibility (CI). CI is a sperm-egg incompatibility resulting in embryonic death. Due to this sterilising effect on mosquitoes, Wolbachia are considered for vector control strategies. Important vectors for arboviruses, filarial nematodes and avian malaria, mosquitoes of Culex pipiens complex are suitable for Wolbachia-based vector control. They are infected with Wolbachia wPip strains belonging to five genetically distinct groups (wPip-I to V) within the Wolbachia B supergroup. CI properties of wPip strongly correlate with this genetic diversity: mosquitoes infected with wPip strains from a different wPip group are more likely to be incompatible with each other. Turkey is a critical spot for vector-borne diseases due to its unique geographical position as a natural bridge between Asia, Europe and Africa. However, general wPip diversity, distribution and CI patterns in natural Cx. pipiens (s.l.) populations in the region are unknown. In this study, we first identified wPip diversity in Turkish Cx. pipiens (s.l.) populations, by assigning them to one of the five groups within wPip (wPip-Ito V). We further investigated CI properties between different wPip strains from this region. RESULTS: We showed a wPip fixation in Cx. pipiens (s.l.) populations in Turkey by analysing 753 samples from 59 sampling sites. Three wPip groups were detected in the region: wPip-I, wPip-II and wPip-IV. The most dominant group was wPip-II. While wPip-IV was restricted to only two locations, wPip-I and wPip-II had wider distributions. Individuals infected with wPip-II were found co-existing with individuals infected with wPip-I or wPip-IV in some sampling sites. Two mosquito isofemale lines harbouring either a wPip-I or a wPip-II strain were established from a population in northwestern Turkey. Reciprocal crosses between these lines showed that they were fully compatible with each other but bidirectionally incompatible with wPip-IV Istanbul infected line. CONCLUSION: Our findings reveal a high diversity of wPip and CI properties in Cx. pipiens (s.l.) populations in Turkey. Knowledge on naturally occurring CI patterns caused by wPip diversity in Turkey might be useful for Cx. pipiens (s.l.) control in the region.


Assuntos
Culex/microbiologia , Citoplasma/microbiologia , Vetores de Doenças , Variação Genética , Mosquitos Vetores/microbiologia , Wolbachia/genética , Animais , Citoplasma/patologia , DNA Mitocondrial/genética , Infecções por Bactérias Gram-Negativas/epidemiologia , Reação em Cadeia da Polimerase , Reprodução , Simbiose , Turquia/epidemiologia , Wolbachia/isolamento & purificação , Wolbachia/fisiologia
11.
Infect Genet Evol ; 57: 36-45, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128516

RESUMO

Mosquitoes are involved in the transmission and maintenance of several viral diseases with significant health impact. Biosurveillance efforts have also revealed insect-specific viruses, observed to cocirculate with pathogenic strains. This report describes the findings of flavivirus and rhabdovirus screening, performed in eastern Thrace and Aegean region of Anatolia during 2016, including and expanding on locations with previously-documented virus activity. A mosquito cohort of 1545 individuals comprising 14 species were collected and screened in 108 pools via generic and specific amplification and direct metagenomics by next generation sequencing. Seven mosquito pools (6.4%) were positive in the flavivirus screening. West Nile virus lineage 1 clade 1a sequences were characterized in a pool Culex pipiens sensu lato specimens, providing the initial virus detection in Aegean region following 2010 outbreak. In an Anopheles maculipennis sensu lato pool, sequences closely-related to Anopheles flaviviruses were obtained, with similarities to several African and Australian strains of this new insect-specific flavivirus clade. In pools comprising Uranotaenia unguiculata (n=3), Cx. pipiens s.l. (n=1) and Aedes caspius (n=1) mosquitoes, sequences of a novel flavivirus, distantly-related to Flavivirus AV2011, identified previously in Spain and Turkey, were characterized. Moreover, DNA forms of the novel flavivirus were detected in two Ur. unguiculata pools. These sequences were highly-similar to the sequences amplified from viral RNA, with undisrupted reading frames, suggest the occurrence of viral DNA forms in natural conditions within mosquito hosts. Rhabdovirus screening revealed sequences of a recently-described novel virus, named the Merida-like virus Turkey (MERDLVT) in 5 Cx. pipiens s.l. pools (4.6%). Partial L and N gene sequences of MERDLVT were well-conserved among strains, with evidence for geographical clustering in phylogenetic analyses. Metagenomics provided the near-full genomic sequence in a specimen, revealing an identical genome organization and limited divergence from the prototype MERDLVT isolate.


Assuntos
Culicidae/virologia , Flavivirus/classificação , Flavivirus/genética , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/genética , Animais , Sequência de Bases , Flavivirus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , RNA Viral , Proteínas não Estruturais Virais/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificação
12.
Curr Trop Med Rep ; 4(1): 27-39, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386524

RESUMO

PURPOSE OF REVIEW: Arboviruses, viruses transmitted by arthropods such as mosquitoes, ticks, sandflies, and fleas are a significant threat to public health because of their epidemic and zoonotic potential. The geographical distribution of mosquito-borne diseases such as West Nile (WN), Rift Valley fever (RVF), Dengue, Chikungunya, and Zika has expanded over the last decades. Countries of the Mediterranean and Black Sea regions are not spared. Outbreaks of WN are repeatedly reported in the Mediterranean basin. Human cases of RVF were reported at the southern borders of the Maghreb region. For this reason, establishing the basis for the research to understand the potential for the future emergence of these and other arboviruses and their expansion into new geographic areas became a public health priority. In this context, the European network "MediLabSecure" gathering laboratories in 19 non-EU countries from the Mediterranean and Black Sea regions seeks to improve the surveillance (of animals, humans, and vectors) by reinforcing capacity building and harmonizing national surveillance systems to address this important human and veterinary health issue. The aim of this review is to give an exhaustive overview of arboviruses and their vectors in the region. RECENT FINDINGS: The data presented underline the importance of surveillance in the implementation of more adapted control strategies to combat vector-borne diseases. Partner laboratories within the MediLabSecure network present a wide range of infrastructures and have benefited from different training programs. SUMMARY: Although reporting of arboviral presence is not carried out in a systematic manner, the expansion of the area where arboviruses are present cannot be disputed. This reinforces the need for increasing surveillance capacity building in this region to prevent future emergences.

13.
Parasit Vectors ; 10(1): 149, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320443

RESUMO

BACKGROUND: Active vector surveillance provides an efficient tool for monitoring the presence or spread of emerging or re-emerging vector-borne viruses. This study was undertaken to investigate the circulation of flaviviruses. Mosquitoes were collected from 58 locations in 10 provinces across the Aegean, Thrace and Mediterranean Anatolian regions of Turkey in 2014 and 2015. Following morphological identification, mosquitoes were pooled and screened by nested and real-time PCR assays. Detected viruses were further characterised by sequencing. Positive pools were inoculated onto cell lines for virus isolation. Next generation sequencing was employed for genomic characterisation of the isolates. RESULTS: A total of 12,711 mosquito specimens representing 15 species were screened in 594 pools. Eleven pools (2%) were reactive in the virus screening assays. Sequencing revealed West Nile virus (WNV) in one Culex pipiens (s.l.) pool from Thrace. WNV sequence corresponded to lineage one clade 1a but clustered distinctly from the Turkish prototype isolate. In 10 pools, insect-specific flaviviruses were characterised as Culex theileri flavivirus in 5 pools of Culex theileri and one pool of Cx. pipiens (s.l.), Ochlerotatus caspius flavivirus in two pools of Aedes (Ochlerotatus) caspius, Flavivirus AV-2011 in one pool of Culiseta annulata, and an undetermined flavivirus in one pool of Uranotaenia unguiculata from the Aegean and Thrace regions. DNA forms or integration of the detected insect-specific flaviviruses were not observed. A virus strain, tentatively named as "Ochlerotatus caspius flavivirus Turkey", was isolated from an Ae. caspius pool in C6/36 cells. The viral genome comprised 10,370 nucleotides with a putative polyprotein of 3,385 amino acids that follows the canonical flavivirus polyprotein organisation. Sequence comparisons and phylogenetic analyses revealed the close relationship of this strain with Ochlerotatus caspius flavivirus from Portugal and Hanko virus from Finland. Several conserved structural and amino acid motifs were identified. CONCLUSIONS: We identified WNV and several distinct insect-specific flaviviruses during an extensive biosurveillance study of mosquitoes in various regions of Turkey in 2014 and 2015. Ongoing circulation of WNV is revealed, with an unprecedented genetic diversity. A probable replicating form of an insect flavivirus identified only in DNA form was detected.


Assuntos
Aedes/virologia , Culex/virologia , Infecções por Flavivirus/virologia , Flavivirus/isolamento & purificação , Insetos Vetores/virologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Aedes/classificação , Animais , Culex/classificação , Flavivirus/classificação , Flavivirus/genética , Flavivirus/fisiologia , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/transmissão , Variação Genética , Genoma Viral , Humanos , Insetos Vetores/classificação , Filogenia , Especificidade da Espécie , Turquia/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/fisiologia
14.
Arch Virol ; 162(7): 1903-1911, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28283817

RESUMO

Next-generation sequencing technologies have significantly facilitated the discovery of novel viruses, and metagenomic surveillance of arthropods has enabled exploration of the diversity of novel or known viral agents. We have identified a novel rhabdovirus that is genetically related to the recently described Merida virus via next-generation sequencing in a mosquito pool from Thrace. The complete viral genome contains 11,798 nucleotides with 83% genome-wide nucleotide sequence similarity to Merida virus. Five major putative open reading frames that follow the canonical rhabdovirus genome organization were identified. A total of 1380 mosquitoes comprising 13 species, collected from Thrace and the Mediterranean and Aegean regions of Anatolia were screened for the novel virus using primers based on the N and L genes of the prototype genome. Eight positive pools (6.2%) exclusively comprised Culex pipiens sensu lato specimens originating from all study regions. Infections were observed in pools with female as well as male or mixed-sex individuals. The overall and Cx. pipiens-specific minimal infection rates were calculated to be 5.7 and 14.8, respectively. Sequencing of the PCR products revealed marked diversity within a portion of the N gene, with up to 4% divergence and distinct amino acid substitutions that were unrelated to the collection site. Phylogenetic analysis of the complete and partial viral polymerase (L gene) amino acid sequences placed the novel virus and Merida virus in a distinct group, indicating that these strains are closely related. The strain is tentatively named "Merida-like virus Turkey". Studies are underway to isolate and further explore the host range and distribution of this new strain.


Assuntos
Culicidae/virologia , Rhabdoviridae/genética , Rhabdoviridae/isolamento & purificação , Animais , Feminino , Genoma Viral , Masculino , Filogenia , Turquia/epidemiologia
15.
Infect Genet Evol ; 46: 138-147, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27840255

RESUMO

Vector surveillance for the arthropod-borne infections has resulted in the isolation of a growing number of novel viruses, including several flavivirus strains that exclusively replicate in insects. This report describes the isolation and genomic characterization of four insect-specific flaviviruses from mosquitoes, previously collected from various locations in Turkey. C6/36 Aedes albopictus and Vero cell lines were inoculated with mosquito pools. On C6/36 cells, mild cytopathic effects, characterized as rounding and detachment, were observed in four pools that comprised female Culex theileri mosquitoes. Complete (3 isolates, 10,697 nucleotides) or near-complete (1 isolate, 10,452 nucleotides) genomic characterization was performed in these culture supernatants via next generation sequencing. All strains demonstrated high genetic similarities, with over 99% identity match on nucleotide and amino acid alignments, revealing them to be different isolates of the same virus. Sequence comparisons identified the closest relative to be the Culex theileri flavivirus (CTFV) strains, originally characterized in Portugal. Phylogenetic analyses demonstrated that the isolates remained distinct as a cluster but formed a monophyletic group with CTFV strains, and shared a common ancestor with Quang Binh or related Culex flaviviruses. The organization of the viral genome was consistent with the universal flavivirus structure and stem-loops; conserved motifs and imperfect tandem repeats were identified in the non-coding ends of the viral genomes. A potential ribosomal shifting site, resulting in the translation of an additional reading frame, was detected. The deduced viral polyprotein comprised 3357 amino acids and was highly-conserved. Amino acid variations, presumably associated with adaptive environmental pressures, were identified. These isolates comprise the first fully characterized insect-specific flaviviruses in Turkey. Their impact on West Nile virus circulation, which is also endemic in the study region, remains to be explored.


Assuntos
Culex/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Genoma Viral/genética , Animais , Feminino , Flavivirus/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Viral/análise , RNA Viral/genética , Análise de Sequência de RNA , Turquia
16.
Parasit Vectors ; 9(1): 526, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27688146

RESUMO

BACKGROUND: Leishmania is a group of parasitic flagellated protozoons, which are transmitted by female sand flies and produces health problems in humans and also in wild and domestic animals. So far, 25 Phlebotomus and 4 Sergentomyia species were recorded in Turkey including proven or possible vectors of Leishmania spp. As no single insecticide susceptibility test was conducted targeting the sand flies in Turkey, we aimed to determine the diagnostic dose against two commonly used synthetic pyrethroids (deltamethrin and permethrin) in a hyperendemic area for leishmaniasis. METHODS: Sand flies were collected from villages of Adana in 2-4 September 2013 using Centers for Disease Control and Prevention (CDC) light traps and transferred to the laboratory. The World Health Organisation tube test method was conducted using self-prepared filter papers with different concentrations. In order to determine the diagnostic dose, lethal doses (LD) were calculated by EPA Probit Analysis. Sand flies used in the experiments were dissected, mounted and identified. RESULTS: For the lowest (0.025 %) and highest dose of permethrin (0.5 %), the mortality rate was recorded as 52.6 % and 100 % by the end of 24-h period and the diagnostic dose was recorded as 0.36 %. The mortality rate for lowest (0.0025 %) and highest (0.05 %) doses of deltamethrin was recorded as 54.8 % and 100 %. The diagnostic dose of deltamethrin was determined as 0.9 %. CONCLUSION: An insecticide susceptibility study was conducted in Turkey for the first time and effective doses were determined by calculating the LDs. According to presented results, the wild population of sand flies collected from a hyper-endemic region of Adana Province is still susceptible to deltamethrin and permethrin.

17.
Trans R Soc Trop Med Hyg ; 110(4): 252-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27076511

RESUMO

BACKGROUND: Leishmaniasis, visceral and cutaneous, is seen in Turkey and has both public and veterinary importance. So far, four Leishmania species and their vectors have been detected in Turkey. Vector control is essential in endemic areas and several personal protection methods are available including long-lasting insecticidal nets (LLINs). In this study, we aimed to measure the effects of usage and storage conditions on LLINs in a village-scale study. METHODS: Olyset(®) Plus bed nets were set up in different climatic conditions (rain, exposed to sunlight and humidity) and collected after 6 months. The effectiveness of bed nets were tested by WHO's cone test method using wild-caught sand flies. RESULTS: Bed nets, which were placed directly exposed to sunlight (A1, A2) showed lower (17.2%) knock down effect compared to bed nets placed indoors (A3, B1). Twenty-four hour mortality was 100% for the five study groups (A2, A3, B1, C1, C2) whereas group A1 was found to have a lower mortality rate (44.4%). CONCLUSION: Bed nets need to avoid direct exposure to sunlight. When used and stored in appropriate conditions (cool, well-ventilated place away from sunlight) they can be used as an effective vector control tool in endemic areas.


Assuntos
Escuridão , Controle de Insetos/métodos , Insetos Vetores , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Leishmaniose/prevenção & controle , Psychodidae/efeitos dos fármacos , Luz Solar , Animais , Bioensaio , Humanos , Controle de Insetos/normas , Leishmaniose/transmissão , Turquia
18.
Acta Trop ; 159: 62-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27021270

RESUMO

The vector species Aedes albopictus (Skuse, 1894) was recorded in Turkey for the first time, near the Greek border, in 2011 and a high risk of expansion towards Aegean and Mediterranean coasts of Turkey was estimated. A preliminary study was planned to evaluate the possibility of creating a satellite mass rearing facility for this species and manage a larval rearing procedure by using the new mass-rearing technology proposed by the International Atomic Energy Agency (IAEA). For this purpose, the effects of different larval densities (1, 2, 3 and 4 larvae per ml) on the preimaginal development were evaluated by observing pupal, adult and male productivity using life cycle trials. Geometric morphometric analyses were also performed to define all phenotypic differences that occurred on the wing size and shape morphology of adult stage at the four different rearing conditions tested. A high pupation productivity was obtained with a larval density of 2 larvae/ml while adult emergence ratio was not affected by the densities tested. No significant difference was observed in shape of the wings among different densities in males and females. Nevertheless, a significant difference in female's centroid sizes was observed between the treatment groups 1-2 and 3-4 larvae/ml and in males centroid size reared at 1 larvae/ml versus the other densities.


Assuntos
Aedes/crescimento & desenvolvimento , Criação de Animais Domésticos/métodos , Vetores de Doenças , Infertilidade , Larva/crescimento & desenvolvimento , Animais , Feminino , Masculino , Turquia
19.
PLoS Negl Trop Dis ; 10(2): e0004458, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26900688

RESUMO

BACKGROUND: The recent geographical expansion of phlebotomine vectors of Leishmania infantum in the Mediterranean subregion has been attributed to ongoing climate changes. At these latitudes, the activity of sand flies is typically seasonal; because seasonal phenomena are also sensitive to general variations in climate, current phenological data sets can provide a baseline for continuing investigations on sand fly population dynamics that may impact on future scenarios of leishmaniasis transmission. With this aim, in 2011-2013 a consortium of partners from eight Mediterranean countries carried out entomological investigations in sites where L. infantum transmission was recently reported. METHODS/PRINCIPAL FINDINGS: A common protocol for sand fly collection included monthly captures by CDC light traps, complemented by sticky traps in most of the sites. Collections were replicated for more than one season in order to reduce the effects of local weather events. In each site, the trapping effort was left unchanged throughout the survey to legitimate inter-seasonal comparisons. Data from 99,000 collected specimens were analyzed, resulting in the description of seasonal dynamics of 56,000 sand flies belonging to L. infantum vector species throughout a wide geographical area, namely P. perniciosus (Portugal, Spain and Italy), P. ariasi (France), P. neglectus (Greece), P. tobbi (Cyprus and Turkey), P. balcanicus and P. kandelakii (Georgia). Time of sand fly appearance/disappearance in collections differed between sites, and seasonal densities showed variations in each site. Significant correlations were found between latitude/mean annual temperature of sites and i) the first month of sand fly appearance, that ranged from early April to the first half of June; ii) the type of density trend, varying from a single peak in July/August to multiple peaks increasing in magnitude from May through September. A 3-modal trend, recorded for P. tobbi in Cyprus, represents a novel finding for a L. infantum vector. Adults ended the activity starting from mid September through November, without significant correlation with latitude/mean annual temperature of sites. The period of potential exposure to L.infantum in the Mediterranean subregion, as inferred by adult densities calculated from 3 years, 37 sites and 6 competent vector species, was associated to a regular bell-shaped density curve having a wide peak center encompassing the July-September period, and falling between early May to late October for more than 99% of values. Apparently no risk for leishmaniasis transmission took place from December through March in the years considered. We found a common pattern of nocturnal females activity, whose density peaked between 11 pm and 2 am. CONCLUSIONS: Despite annual variations, multiple collections performed over consecutive years provided homogeneous patterns of the potential behavior of leishmaniasis vectors in selected sites, which we propose may represent sentinel areas for future monitoring. In the investigated years, higher potential risk for L. infantum transmission in the Mediterranean was identified in the June-October period (97% relative vector density), however such risk was not equally distributed throughout the region, since density waves of adults occurred earlier and were more frequent in southern territories.


Assuntos
Insetos Vetores/fisiologia , Leishmania infantum/fisiologia , Leishmaniose/transmissão , Psychodidae/fisiologia , Animais , Clima , Feminino , Humanos , Insetos Vetores/parasitologia , Leishmaniose/epidemiologia , Leishmaniose/parasitologia , Masculino , Região do Mediterrâneo/epidemiologia , Dinâmica Populacional , Psychodidae/parasitologia , Estações do Ano
20.
Acta Trop ; 143: 112-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25446171

RESUMO

As a precursor to planned arboviral vector incrimination studies, an integrated systematics approach was adopted using morphology and DNA barcoding to examine the Culex fauna present in Turkey. The mitochondrial COI gene (658bp) were sequenced from 185 specimens collected across 11 Turkish provinces, as well as from colony material. Although by morphology only 9 species were recognised, DNA barcoding recovered 13 distinct species including: Cx. (Barraudius) modestus, Cx. (Culex) laticinctus, Cx. (Cux.) mimeticus, Cx. (Cux.) perexiguus, Cx. (Cux.) pipiens, Cx. (Cux.) pipiens form molestus, Cx. (Cux.) quinquefasciatus, Cx. (Cux.) theileri, Cx. (Cux.) torrentium, Cx. (Cux.) tritaeniorhynchus and Cx. (Maillotia) hortensis. The taxon formerly identified as Cx. (Neoculex) territans was shown to comprise two distinct species, neither of which correspond to Cx. territans s.s. These include Cx. (Neo.) impudicus and another uncertain species, which may be Cx. (Neo.) europaeus or Cx. (Neo.) martinii (herein=Cx. (Neo.) sp. 1). Detailed examination of the Pipiens Group revealed Cx. pipiens, Cx. pipiens f. molestus and the widespread presence of the highly efficient West Nile virus vector Cx. quinquefasciatus for the first time. Four new country records are reported, increasing the Culex of Turkey to 15 recognised species and Cx. pipiens f. molestus. A new taxonomic checklist is provided, annotated with respective vector competencies for transmission of arboviruses.


Assuntos
Arbovírus/isolamento & purificação , Culex/genética , Culex/virologia , Código de Barras de DNA Taxonômico/métodos , Insetos Vetores/virologia , Animais , Reação em Cadeia da Polimerase , Especificidade da Espécie , Turquia , Vírus do Nilo Ocidental/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA