Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Front Oncol ; 14: 1288501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559562

RESUMO

SKP2 (S-phase kinase-associated protein 2) is a member of the F-box family of substrate-recognition subunits in the SCF ubiquitin-protein ligase complexes. It is associated with ubiquitin-mediated degradation in the mammalian cell cycle components and other target proteins involved in cell cycle progression, signal transduction, and transcription. Being an oncogene in solid tumors and hematological malignancies, it is frequently associated with drug resistance and poor disease outcomes. In the current review, we discussed the novel role of SKP2 in different hematological malignancies. Further, we performed a limited in-silico analysis to establish the involvement of SKP2 in a few publicly available cancer datasets. Interestingly, our study identified Skp2 expression to be altered in a cancer-specific manner. While it was found to be overexpressed in several cancer types, few cancer showed a down-regulation in SKP2. Our review provides evidence for developing novel SKP2 inhibitors in hematological malignancies. We also investigated the effect of SKP2 status on survival and disease progression. In addition, the role of miRNA and its associated families in regulating Skp2 expression was explored. Subsequently, we predicted common miRNAs against Skp2 genes by using miRNA-predication tools. Finally, we discussed current approaches and future prospective approaches to target the Skp2 gene by using different drugs and miRNA-based therapeutics applications in translational research.

2.
Drug Metab Pers Ther ; 39(1): 5-20, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469723

RESUMO

INTRODUCTION: Cancer biomarkers have revolutionized the field of oncology by providing valuable insights into tumor changes and aiding in screening, diagnosis, prognosis, treatment prediction, and risk assessment. The emergence of "omic" technologies has enabled biomarkers to become reliable and accurate predictors of outcomes during cancer treatment. CONTENT: In this review, we highlight the clinical utility of biomarkers in cancer identification and motivate researchers to establish a personalized/precision approach in oncology. By extending a multidisciplinary technology-based approach, biomarkers offer an alternative to traditional techniques, fulfilling the goal of cancer therapeutics to find a needle in a haystack. SUMMARY AND OUTLOOK: We target different forms of cancer to establish a dynamic role of biomarkers in understanding the spectrum of malignancies and their biochemical and molecular characterization, emphasizing their prospective contribution to cancer screening. Biomarkers offer a promising avenue for the early detection of human cancers and the exploration of novel technologies to predict disease severity, facilitating maximum survival and minimum mortality rates. This review provides a comprehensive overview of the potential of biomarkers in oncology and highlights their prospects in advancing cancer diagnosis and treatment.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Estudos Prospectivos , Biomarcadores , Neoplasias/diagnóstico , Neoplasias/terapia , Biomarcadores Tumorais , Prognóstico
3.
Curr Med Chem ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38445701

RESUMO

BACKGROUND: Punica granatum L. is well-known for its multifaceted therapeutic potential, including anti-inflammatory and immunomodulatory activities. AIM: This study aimed to characterize an immunomodulatory compound isolated from Punica granatum L. using a bioactivity-guided approach. METHODS: Chromatographic techniques were adopted for isolation and purification of secondary metabolites. In silico, in vitro, and in vivo methods were performed to characterize the therapeutic potential of the isolated compound. RESULTS: Using preparative thin-layer chromatography, rosmarinic acid was isolated from F4 (column chromatography product obtained from a butanolic fraction of the extract). The impact of rosmarinic acid was assessed in rats using the neutrophil adhesion test, DTH response, and phagocytic index. In immunized rats, rosmarinic acid demonstrated significant immunomodulatory potential. Computational experiments, like molecular docking and molecular dynamics, were also conducted against two targeted receptors, Cereblon (PDB ID: 8AOQ) and human CD22 (PDB ID: 5VKM). Computational studies suggested that an increase in phagocytic index by rosmarinic acid could be attributed to inhibiting Cereblon and CD22. Pharmacokinetics and toxicity prediction also suggested the drug-likeness of rosmarinic acid. CONCLUSION: Rosmarinic acid is a potential candidate, but extensive research needs to be done to translate this molecule from bench to bedside.

4.
Cancer Rep (Hoboken) ; 6(11): e1878, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37530125

RESUMO

Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria-host interactions and bacteria-induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer.


Assuntos
Helicobacter pylori , Microbiota , Neoplasias Gástricas , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Neoplasias Gástricas/microbiologia , Citotoxinas/metabolismo
5.
3 Biotech ; 13(7): 223, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37292139

RESUMO

Upon understanding the boosting role of carotenoids on the endogenous anti-inflammatory system, it is vital to explore their role in reducing the use of high doses of non-steroidal anti-inflammatory drug (NSAIDs), and their mediated secondary toxicity during the treatment of chronic diseases. The current study investigates the carotenoids potential on inhibition of secondary complications induced by NSAIDs, aspirin (ASA) against lipopolysaccharide (LPS) stimulated inflammation. Initially, this study evaluated a minimal cytotoxic dose of ASA and carotenoids (ß-carotene, BC/lutein, LUT/astaxanthin, AST/fucoxanthin FUCO) in Raw 264.7, U937, and peripheral blood mononuclear cells (PBMCs). In all three cells, carotenoids + ASA treatment reduced the LDH release, NO, and PGE2 efficiently than an equivalent dose of carotenoid or ASA treated alone. Based on cytotoxicity and sensitivity results, RAW 264.7 cells were selected for further cell-based assay. Among carotenoids, FUCO + ASA exhibited an efficient reduction of LDH release, NO, and PGE2 than the other carotenoids (BC + ASA, LUT + ASA, and AST + ASA) treatment. FUCO + ASA combination decreased LPS/ASA induced oxidative stress, pro-inflammatory mediators (iNOS, COX-2, and NF-κB), and cytokines (IL-6, TNF-α, and IL-1ß) efficiently. Further, apoptosis was inhibited by 69.2% in FUCO + ASA, and 46.7% in ASA than LPS treated cells. A drastic decrease in intracellular ROS generation with the increase in GSH was observed in FUCO + ASA compared to LPS/ASA groups. The results documented on the low dose of ASA with a relative physiological concentration of FUCO suggested greater importance for alleviating secondary complications and optimize prolonged chronic disease treatments with NSAID's associated side effects. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03632-w.

6.
Biomarkers ; 28(6): 502-518, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37352015

RESUMO

Breast cancer (BC) remains the most challenging global health crisis of the current decade, impacting a large population of females annually. In the field of cancer research, the discovery of extracellular vesicles (EVs), specifically exosomes (a subpopulation of EVs), has marked a significant milestone. In general, exosomes are released from all active cells but tumour cell-derived exosomes (TDXs) have a great impact (TDXs miRNAs, proteins, lipid molecules) on cancer development and progression. TDXs regulate multiple events in breast cancer such as tumour microenvironment remodelling, immune cell suppression, angiogenesis, metastasis (EMT-epithelial mesenchymal transition, organ-specific metastasis), and therapeutic resistance. In BC, early detection is the most challenging event, exosome-based BC screening solved the problem. Exosome-based BC treatment is a sign of the transforming era of liquid biopsy, it is also a promising therapeutic tool for breast cancer. Exosome research goes to closer precision oncology via a single exosome profiling approach. Our hope is that this review will serve as motivation for researchers to explore the field of exosomes and develop an efficient, and affordable theranostics approach for breast cancer.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Medicina de Precisão , Relevância Clínica , Exossomos/genética , Exossomos/patologia , Microambiente Tumoral/genética
7.
Transl Oncol ; 27: 101571, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401966

RESUMO

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the leading cause of cancer-related deaths worldwide. Identification of gene biomarkers and their regulatory factors and signaling pathways is very essential to reveal the molecular mechanisms of NSCLC initiation and progression. Thus, the goal of this study is to identify gene biomarkers for NSCLC diagnosis and prognosis by using scRNA-seq data through bioinformatics techniques. scRNA-seq data were obtained from the GEO database to identify DEGs. A total of 158 DEGs (including 48 upregulated and 110 downregulated) were detected after gene integration. Gene Ontology enrichment and KEGG pathway analysis of DEGs were performed by FunRich software. A PPI network of DEGs was then constructed using the STRING database and visualized by Cytoscape software. We identified 12 key genes (KGs) including MS4A1, CCL5, and GZMB, by using two topological methods based on the PPI networking results. The diagnostic, expression, and prognostic potentials of the identified 12 key genes were assessed using the receiver operating characteristics (ROC) curve and a web-based tool, SurvExpress. From the regulatory network analysis, we extracted the 7 key transcription factors (TFs) (FOXC1, YY1, CEBPB, TFAP2A, SREBF2, RELA, and GATA2), and 8 key miRNAs (hsa-miR-124-3p, hsa-miR-34a-5p, hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-449a, hsa-miR-24-3p, hsa-let-7b-5p, and hsa-miR-7-5p) associated with the KGs were evaluated. Functional enrichment and pathway analysis, survival analysis, ROC analysis, and regulatory network analysis highlighted crucial roles of the key genes. Our findings might play a significant role as candidate biomarkers in NSCLC diagnosis and prognosis.

8.
Biotechnol Genet Eng Rev ; 39(1): 85-117, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35861776

RESUMO

Oral microbial ecosystems are vital in maintaining the health of the oral cavity and the entire body. Oral microbiota is associated with the progression of oral diseases such as dental caries, periodontal diseases, head and neck cancer, and several systemic diseases such as cardiovascular disease, rheumatoid arthritis, adverse pregnancy outcomes, diabetes, lung infection, colorectal cancer, and pancreatic cancer. Buccal mucosa, tongue dorsum, hard palate, saliva, palatine tonsils, throat, keratinized gingiva, supra-gingival plaque, subgingival plaque, dentures, and lips are microbial habitats of the oral cavity. Porphyromonas gingivalis may have a role in the development of periodontal diseases, oral cancer, diabetes, and atherosclerotic disease. Fusobacterium nucleatum showed a higher abundance in periodontal diseases, oral and colon cancer, adverse pregnancy outcomes, diabetes, and rheumatoid arthritis. The higher abundance of Prevotella intermedia is typical in periodontal diseases, rheumatoid arthritis, and adverse pregnancy outcome. S. salivarius displayed higher abundance in both dental caries and OSCC. Oral bacteria may influence systemic diseases through inflammation by releasing pro inflammatory cytokines. Identification of oral bacteria using culture-dependent approaches and next-generation sequencing-based metagenomic approaches is believed to significantly identify the therapeutic targets and non-invasive diagnostic indicators in different human diseases. Oral bacteria in saliva could be exploited as a non-invasive diagnostic indicator for the early detection of oral and systemic disorders. Other therapeutic approaches such as the use of probiotics, green tea polyphenol, cold atmospheric plasma (CAP) therapy, antimicrobial photodynamic therapy, and antimicrobial peptides are used to inhibit the growth of biofilm formation by oral bacteria.


Porphyromonas gingivalis may have a role in the development of periodontal diseases, oral cancer, diabetes, and atherosclerotic diseaseFusobacterium nucleatum showed a higher abundance in periodontal diseases, oral and colon cancer, adverse pregnancy outcomes, diabetes, and rheumatoid arthritisOral bacteria may influence systemic diseases through inflammation by releasing pro inflammatory cytokines.Identification of oral bacteria in saliva may be used as a non-invasive diagnostic indicator for the early detection of oral and systemic disorders.


Assuntos
Artrite Reumatoide , Cárie Dentária , Microbiota , Doenças Periodontais , Feminino , Humanos , Gravidez , Doenças Periodontais/microbiologia , Porphyromonas gingivalis
9.
Biotechnol Genet Eng Rev ; 39(1): 143-165, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35904341

RESUMO

Glioblastoma (GBM) is presented with a poor prognosis. The endoplasmic reticulum stress (ERS) has been implicated as a major contributor to disease progression and chemoresistance in GBM. Triggering ERS by chemical agents or genetic modulations is identified as some of the reasons for regulating gene expression and the pathogenesis of GBM. ERS initiates unfolded protein response (UPR), an integrated system useful in restoring homeostasis or inducing apoptosis. Modulation of UPR might have positive outcomes in GBM treatment as UPR inducers have been shown to alter cell survival and migration. In the current review, we have utilized GSE7806, a publicly available dataset from Gene Expression Omnibus (GEO), to evaluate the genes expressed during 6.5 hr and 18 hr, which can be comparable to the early and late-onset of the disease. Subsequently, we have elucidated the prognosis and survival information whilst the expression of these genes in the GBM was noted in previous studies. This is the first of its kind review summarizing the most recent gene information correlating UPR and GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático , Apoptose
10.
Neuromolecular Med ; 25(2): 145-162, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36153432

RESUMO

The attribution of seizure freedom is yet to be achieved for patients suffering from refractory epilepsy, e.g. Dravet Syndrome (DS). The confined ability of mono-chemical entity-based antiseizure drugs (ASDs) to act directly at genomic level is one of the factors, combined with undetermined seizure triggers lead to recurrent seizure (RS) in DS, abominably affecting the sub-genomic architecture of neural cells. Thus, the RS and ASD appear to be responsible for the spectrum of exorbitant clinical pathology. The RS distresses the 5-HT-serotonin pathway, hypomethylates genes of CNS, and modulates the microRNA (miRNA)/long non-coding RNA (lncRNA), eventually leading to frozen molecular alterations. These changes shall be reverted by compatible epigenetic regulators (EGR) like, miRNA and lncRNA from Breast milk (BML) and Bacopa monnieri (BMI). The absence of studious seizure in SCN1A mutation-positive babies for the first 6 months raises the possibility that the consequences of mutation in SCN1A are subsidized by EGRs from BML. EGR-dependent-modifier gene effect is likely imposed by the other members of the SCN family. Therefore, we advocate that miRNA/lncRNA from BML and bacosides/miRNA from BMI buffer the effect of SCN1A mutation by sustainably maintaining modifier gene effect in the aberrant neurons. The presence of miRNA-155-5p, -30b-5p, and -30c-5p family in BML and miR857, miR168, miR156, and miR158 in BMI target at regulating SCN family and CLCN5 as visualized by Cystoscope. Thus, we envisage that the possible effects of EGR might include (a) upregulating the haploinsufficient SCN1A strand, (b) down-regulating seizure-elevated miRNA, (c) suppressing the seizure-induced methyltransferases, and (d) enhancing the GluN2A subunit of NMDA receptor to improve cognition. The potential of these EGRs from BML and BML is to further experimentally strengthen, long-haul step forward in molecular therapeutics.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Mioclônicas , MicroRNAs , RNA Longo não Codificante , Lactente , Feminino , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsia Resistente a Medicamentos/genética , RNA Longo não Codificante/genética , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Convulsões , Mutação , MicroRNAs/genética , Epigênese Genética
11.
Front Nutr ; 9: 1063118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466417

RESUMO

Trikatu Churna (TC) comprising Zingiber officinale rhizome, Piper longum, and Piper nigrum fruit, is effective in treating liver diseases and has high nutraceutical values. However, the efficacy of TC in treating alcoholic liver disease (ALD) and its mechanism remain largely unknown. This study evaluated the hepatoprotective effects of different doses of TC as well as to identify the bioactive components and determine their mechanism of action against ethanol-induced ALD. A compound-target network analysis model of TC was established to identify its potential bioactive compounds and pathways that might regulate its hepatoprotective effects. Further, in-vivo studies were performed to validate the potential of TC (200 mg/kg and 400 mg/kg b.w.) in the treatment and management of ALD. The study revealed that both the dosages of TC demonstrate significant (p > 0.0001) hepatoprotective effects by improving body weight, total bilirubin, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), serum alkaline phosphate (ALP), total cholesterol, total protein, globulin, albumin, and liver morphology. The High-performance thin-layer chromatography (HPTLC) fingerprinting of TC showed the presence of piperine. Network pharmacology identifies the role of TC in regulating various signaling processes including Advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE), Hypoxia-inducible factors (HIF-1), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-Kappa B), and Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling to exert its anti-inflammatory, antioxidant and anti-apoptotic role in managing ALD. Based on the bioinformatics analysis, some of the key targets of TC were found to be Prostaglandin-Endoperoxide Synthase 2 (PTGS2) or Cyclooxygenase-2 (COX-2), Sirtuin 1 (SRT1), and caspase-3. These effects may serve as a novel therapeutic option for the treatment of ALD. These preclinical validation studies for the ethnopharmacological potential of TC in ALD treatment further paved the way for researchers to perform next-level translational and clinical studies. Further, in-depth experimental studies for the validation of these bioinformatics-based results will give a clearer picture of mechanisms.

12.
J Oncol ; 2022: 5231022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299504

RESUMO

COVID-19 resulted in a mortality rate of 3-6% caused by SARS-CoV-2 and its variant leading to unprecedented consequences of acute respiratory distress septic shock and multiorgan failure. In such a situation, evaluation, diagnosis, treatment, and care for cancer patients are difficult tasks faced by medical staff. Moreover, patients with gynaecological cancer appear to be more prone to severe infection and mortality from COVID-19 due to immunosuppression by chemotherapy and coexisting medical disorders. To deal with such a circumtances oncologists have been obliged to reconsider the entire diagnostic, treatment, and management approach. This review will provide and discuss the molecular link with gynaecological cancer under COVID-19 infection, providing a novel bilateral relationship between the two infections. Moreover, the authors have provided insights to discuss the pathobiology of COVID-19 in gynaecological cancer and their risks associated with such comorbidity. Furthermore, we have depicted the overall impact of host immunity along with guidelines for the treatment of patients with gynaecological cancer under COVID-19 infection. We have also discussed the feasible scope for the management of COVID-19 and gynaecological cancer.

13.
Front Oncol ; 12: 977933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176419

RESUMO

Human papillomavirus (HPV) contributes to sexually transmitted infection, which is primarily associated with pre-cancerous and cancerous lesions in both men and women and is among the neglected cancerous infections in the world. At global level, two-, four-, and nine-valent pure L1 protein encompassed vaccines in targeting high-risk HPV strains using recombinant DNA technology are available. Therapeutic vaccines are produced by early and late oncoproteins that impart superior cell immunity to preventive vaccines that are under investigation. In the current review, we have not only discussed the clinical significance and importance of both preventive and therapeutic vaccines but also highlighted their dosage and mode of administration. This review is novel in its way and will pave the way for researchers to address the challenges posed by HPV-based vaccines at the present time.

14.
Crit Rev Food Sci Nutr ; : 1-45, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838143

RESUMO

Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.

15.
Biomed Res Int ; 2022: 1659338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832856

RESUMO

Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW.


Assuntos
Diabetes Mellitus , Pé Diabético , Amputação Cirúrgica , Curativos Hidrocoloides , Diabetes Mellitus/terapia , Pé Diabético/terapia , Humanos , Polímeros/uso terapêutico , Cicatrização
16.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166431, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533903

RESUMO

Metastasis consists of hallmark events, including Epithelial-Mesenchymal Transition (EMT), angiogenesis, initiation of inflammatory tumor microenvironment, and malfunctions in apoptosis. Autophagy is known to play a pivotal role in the metastatic process. Autophagy has pulled researchers towards it in recent times because of its dual role in the maintenance of cancer cells. Evidence states that cells undergoing EMT need autophagy in order to survive during migration and dissemination. Additionally, it orchestrates EMT markers in certain cancers. On the other side of the coin, autophagy plays an oncosuppressive role in impeding early metastasis. This review aims to project the interrelationship between autophagy and EMT. Targeting EMT via autophagy as a useful strategy is discussed in this review. Furthermore, for the first time, we have covered the possible reciprocating roles of EMT and autophagy and its consequences in cancer metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Apoptose , Autofagia , Humanos , Neoplasias/patologia , Microambiente Tumoral
17.
Eur J Cell Biol ; 101(2): 151220, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35366585

RESUMO

Metastasis or the progression of malignancy poses a major challenge in cancer therapy and is the principal reason for increased mortality. The epithelial-mesenchymal transition (EMT) of the basement membrane (BM) allows cells of epithelial phenotype to transform into a mesenchymal-like (quasi-mesenchymal) phenotype and metastasize via the lymphovascular system through a metastatic cascade by intravasation and extravasation. This helps in the progression of carcinoma from the primary site to distant organs. Collagen, laminin, and integrin are the prime components of BM and help in tumor cell metastasis, which makes them ideal cancer drug targets. Further, recent studies have shown that collagen, laminin, and integrin can be used as a biomarker for metastatic cells. In this review, we have summarized the current knowledge of such therapeutics, which are either currently in preclinical or clinical stages and could be promising cancer therapeutics. DATA AVAILABILITY: Not applicable.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Membrana Basal/metabolismo , Colágeno , Humanos , Integrinas , Laminina , Proteínas de Membrana , Neoplasias/terapia
18.
Open Biol ; 12(3): 210289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35291879

RESUMO

Developmental signalling pathways such as Wnt/ß-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.


Assuntos
Esclerose Lateral Amiotrófica , Doenças do Sistema Nervoso , Adulto , Esclerose Lateral Amiotrófica/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Transdução de Sinais
19.
Dis Markers ; 2022: 2941248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178126

RESUMO

The gut bacterial community is involved in the metabolism of bile acids and short-chain fatty acids (SCFAs). Bile acids are involved in the absorption of fat and the regulation of lipid homeostasis through emulsification and are transformed into unconjugated bile acids by the gut microbiota. The gut microbiota is actively involved in the production of bile acid metabolites, such as deoxycholic acid, lithocholic acid, choline, and SCFAs such as acetate, butyrate, and propionate. Metabolites derived from the gut microbiota or modified gut microbiota metabolites contribute significantly to host pathophysiology. Gut bacterial metabolites, such as deoxycholic acid, contribute to the development of hepatocellular carcinoma and colon cancer by factors such as inflammation and oxidative DNA damage. Butyrate, which is derived from gut bacteria such as Megasphaera, Roseburia, Faecalibacterium, and Clostridium, is associated with the activation of Treg cell differentiation in the intestine through histone acetylation. Butyrate averts the action of class I histone deacetylases (HDAC), such as HDAC1 and HDAC3, which are responsible for the transcription of genes such as p21/Cip1, and cyclin D3 through hyperacetylation of histones, which orchestrates G1 cell cycle arrest. It is essential to identify the interaction between the gut microbiota and bile acid and SCFA metabolism to understand their role in gastrointestinal carcinogenesis including colon, gastric, and liver cancer. Metagenomic approaches with bioinformatic analyses are used to identify the bacterial species in the metabolism of bile acids and SCFAs. This review provides an overview of the current knowledge of gut microbiota-derived bile acid metabolism in tumor development and whether it can stand as a marker for carcinogenesis. Additionally, this review assesses the evidence of gut microbiota-derived short-chain fatty acids including butyric acid in antitumor activity. Future research is required to identify the beneficial commensal gut bacteria and their metabolites which will be considered to be therapeutic targets in inflammation-mediated gastrointestinal cancers.


Assuntos
Carcinogênese , Disbiose/complicações , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Neoplasias/etiologia , Humanos , Prognóstico
20.
Semin Cancer Biol ; 86(Pt 2): 1086-1104, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35218902

RESUMO

Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-ß/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles (NPs) in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded NPs have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.


Assuntos
Nanomedicina , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Compreensão , Recidiva Local de Neoplasia , Transdução de Sinais , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA