Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (184)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35723486

RESUMO

The major cause of cancer-related deaths is metastasis formation (i.e., when cancer cells spread from the primary tumor to distant organs and form secondary tumors). Delamination, defined as the degradation of the basal lamina and basement membrane, is the initial process that facilitates the transmigration and spread of cancer cells to other tissues and organs. Scoring the delamination capacity of cancer cells would indicate the metastatic potential of these cells. We have developed a standardized method, the ex ovo CAM-Delam assay, to visualize and quantify the ability of cancer cells to delaminate and invade, thereby being able to assess metastatic aggressiveness. Briefly, the CAM-Delam method includes seeding cancer cells in silicone rings on the chick chorioallantoic membrane (CAM) at embryonic day 10, followed by incubation from hours to a few days. The CAM-Delam assay includes the use of an internal humidified chamber during chick embryo incubation. This novel approach increased embryo survival from 10%-50% to 80%-90%, which resolved previous technical problems with low embryo survival rates in different CAM assays. Next, the CAM samples with associated cancer cell clusters were isolated, fixed, and frozen. Finally, cryostat-sectioned samples were visualized and analyzed for basement membrane damage and cancer cell invasion using immunohistochemistry. By evaluating various known metastatic and non-metastatic cancer cell lines designed to express green fluorescent protein (GFP), the CAM-Delam quantitative results showed that the delamination capacity patterns reflect metastatic aggressiveness and can be scored into four categories. Future use of this assay, apart from quantifying delamination capacity as an indication of metastatic aggressiveness, is to unravel the molecular mechanisms that control delamination, invasion, the formation of micrometastases, and changes in the tumor microenvironment.


Assuntos
Membrana Corioalantoide , Neoplasias , Animais , Bioensaio , Linhagem Celular Tumoral , Embrião de Galinha , Galinhas , Membrana Corioalantoide/patologia , Neoplasias/patologia
2.
Front Cell Dev Biol ; 10: 798590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386201

RESUMO

PIP5K1α has emerged as a promising drug target for the treatment of castration-resistant prostate cancer (CRPC), as it acts upstream of the PI3K/AKT signaling pathway to promote prostate cancer (PCa) growth, survival and invasion. However, little is known of the molecular actions of PIP5K1α in this process. Here, we show that siRNA-mediated knockdown of PIP5K1α and blockade of PIP5K1α action using its small molecule inhibitor ISA-2011B suppress growth and invasion of CRPC cells. We demonstrate that targeted deletion of the N-terminal domain of PIP5K1α in CRPC cells results in reduced growth and migratory ability of cancer cells. Further, the xenograft tumors lacking the N-terminal domain of PIP5K1α exhibited reduced tumor growth and aggressiveness in xenograft mice as compared to that of controls. The N-terminal domain of PIP5K1α is required for regulation of mRNA expression and protein stability of PIP5K1α. This suggests that the expression and oncogenic activity of PIP5K1α are in part dependent on its N-terminal domain. We further show that PIP5K1α acts as an upstream regulator of the androgen receptor (AR) and AR target genes including CDK1 and MMP9 that are key factors promoting growth, survival and invasion of PCa cells. ISA-2011B exhibited a significant inhibitory effect on AR target genes including CDK1 and MMP9 in CRPC cells with wild-type PIP5K1α and in CRPC cells lacking the N-terminal domain of PIP5K1α. These results indicate that the growth of PIP5K1α-dependent tumors is in part dependent on the integrity of the N-terminal sequence of this kinase. Our study identifies a novel functional mechanism involving PIP5K1α, confirming that PIP5K1α is an intriguing target for cancer treatment, especially for treatment of CRPC.

3.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34417283

RESUMO

Opsin 3 (Opn3) is highly expressed in the adult brain, however, information for spatial and temporal expression patterns during embryogenesis is significantly lacking. Here, an Opn3-eGFP reporter mouse line was used to monitor cell body expression and axonal projections during embryonic and early postnatal to adult stages. By applying 2D and 3D fluorescence imaging techniques, we have identified the onset of Opn3 expression, which predominantly occurred during embryonic stages, in various structures during brain/head development. In addition, this study defines over twenty Opn3-eGFP-positive neural structures never reported before. Opn3-eGFP was first observed at E9.5 in neural regions, including the ganglia that will ultimately form the trigeminal, facial and vestibulocochlear cranial nerves (CNs). As development proceeds, expanded Opn3-eGFP expression coincided with the formation and maturation of critical components of the central and peripheral nervous systems (CNS, PNS), including various motor-sensory tracts, such as the dorsal column-medial lemniscus (DCML) sensory tract, and olfactory, acoustic, and optic tracts. The widespread, yet distinct, detection of Opn3-eGFP already at early embryonic stages suggests that Opn3 might play important functional roles in the developing brain and spinal cord to regulate multiple motor and sensory circuitry systems, including proprioception, nociception, ocular movement, and olfaction, as well as memory, mood, and emotion. This study presents a crucial blueprint from which to investigate autonomic and cognitive opsin-dependent neural development and resultant behaviors under physiological and pathophysiological conditions.


Assuntos
Opsinas , Opsinas de Bastonetes , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Camundongos , Medula Espinal
4.
BMC Mol Cell Biol ; 22(1): 37, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225662

RESUMO

BACKGROUND: Organ culture models have been used over the past few decades to study development and disease. The in vitro three-dimensional (3D) culture system of organoids is well known, however, these 3D systems are both costly and difficult to culture and maintain. As such, less expensive, faster and less complex methods to maintain 3D cell culture models would complement the use of organoids. Chick embryos have been used as a model to study human biology for centuries, with many fundamental discoveries as a result. These include cell type induction, cell competence, plasticity and contact inhibition, which indicates the relevance of using chick embryos when studying developmental biology and disease mechanisms. RESULTS: Here, we present an updated protocol that enables time efficient, cost effective and long-term expansion of fetal organ spheroids (FOSs) from chick embryos. Utilizing this protocol, we generated FOSs in an anchorage-independent growth pattern from seven different organs, including brain, lung, heart, liver, stomach, intestine and epidermis. These three-dimensional (3D) structures recapitulate many cellular and structural aspects of their in vivo counterpart organs and serve as a useful developmental model. In addition, we show a functional application of FOSs to analyze cell-cell interaction and cell invasion patterns as observed in cancer. CONCLUSION: The establishment of a broad ranging and highly effective method to generate FOSs from different organs was successful in terms of the formation of healthy, proliferating 3D organ spheroids that exhibited organ-like characteristics. Potential applications of chick FOSs are their use in studies of cell-to-cell contact, cell fusion and tumor invasion under defined conditions. Future studies will reveal whether chick FOSs also can be applicable in scientific areas such as viral infections, drug screening, cancer diagnostics and/or tissue engineering.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Modelos Biológicos , Invasividade Neoplásica/patologia , Organoides/citologia , Esferoides Celulares/citologia , Animais , Comunicação Celular , Linhagem Celular Tumoral , Embrião de Galinha , Galinhas , Humanos , Organoides/ultraestrutura , Esferoides Celulares/ultraestrutura , Técnicas de Cultura de Tecidos
5.
Invest Ophthalmol Vis Sci ; 61(11): 5, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882011

RESUMO

Purpose: In mammals, pupil constriction and dilation form the pupillary light reflex (PLR), which is mediated by both brain-regulated (parasympathetic) and local iris-driven reflexes. To better understand the cellular mechanisms that regulate pupil physiological dynamics via central and local photoreception, we have examined the regulation of the PLR via parasympathetic and local activation, respectively. Methods: In this study, the PLR was examined in mouse enucleated eyes ex vivo in real-time under different ionic conditions in response to acetylcholine and/or blue light (480 nm). The use of pupillometry recordings captured the relaxation, contraction, and pupil escape (redilation) processes for 10 minutes up to 1 hour. Results: Among others, our results show that ryanodine receptor channels are the main driver for iridal stimulation-contraction coupling, in which extracellular influx of Ca2+ is required for amplification of pupil constriction. Both local and parasympathetic iridal activations are necessary, but not sufficient for sustained pupil constriction. Moreover, the degree of membrane potential repolarization in the dark is correlated with the latency and velocity of iridal constriction. Furthermore, pupil escape is driven by membrane potential hyperpolarization where voltage-gated potassium channels play a crucial role. Conclusions: Together, this study presents new mechanisms regulating synchronized pupil dilation and contraction, sustained pupil constriction, iridal stimulation-contraction coupling, and pupil escape.


Assuntos
Adaptação à Escuridão/fisiologia , Iris/fisiologia , Pupila/fisiologia , Reflexo Pupilar/fisiologia , Visão Ocular , Animais , Cálcio/metabolismo , Camundongos , Modelos Animais
6.
Sci Rep ; 10(1): 10472, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591581

RESUMO

The development of metastases is the major cause of cancer related death. To develop a standardized method that define the ability of human cancer cells to degrade the basement membrane, e.g. the delamination capacity, is of importance to assess metastatic aggressiveness. We now present the in vivo CAM-Delam assay to visualize and quantify the ability of human cancer cells to delaminate and invade. The method includes seeding cancer cells on the chick chorioallantoic membrane (CAM), followed by the evaluation of cancer-induced delamination and potential invasion within hours to a few days. By testing a range of human cancer cell lines in the CAM-Delam assay, our results show that the delamination capacity can be divided into four categories and used to quantify metastatic aggressiveness. Our results emphasize the usefulness of this assay for quantifying delamination capacity as a measurement of metastatic aggressiveness, and in unraveling the molecular mechanisms that regulate delamination, invasion, formation of micro-metastases and modulations of the tumor microenvironment. This method will be useful in both the preclinical and clinical characterization of tumor biopsies, and in the validation of compounds that may improve survival in metastatic cancer.


Assuntos
Bioensaio/métodos , Membrana Corioalantoide/patologia , Neoplasias/patologia , Células A549 , Animais , Linhagem Celular Tumoral , Galinhas , Humanos , Células PC-3
7.
Differentiation ; 110: 8-16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31539705

RESUMO

The terminal nerve ganglion (TNG) is a well-known structure of the peripheral nervous system in cartilaginous and teleost fishes. It derives from the olfactory placode during embryonic development. While the differentiation and migration of gonadotropin releasing hormone (GnRH)-expressing neurons from the olfactory placode has been well documented, the TNG has been neglected in birds and mammals, and its development is less well described. Here we describe the formation of a ganglion-like structure from migratory olfactory placodal cells in chicken. The TNG is surrounded by neural crest cells, but in contrast to other cranial sensory ganglia, we observed no neural crest corridor, and olfactory unsheathing cells appear only after the onset of neuronal migration. We identified Isl1 and Lhx2 as two transcription factors that label neuronal subpopulations in the forming TNG, distinct from GnRH1+ cells, thereby revealing a diversity of cell types during the formation of the TNG. We also provide evidence for extensive apoptosis in the terminal nerve ganglion shortly after its formation, but not in other cranial sensory ganglia. Moreover, at later stages placode-derived neurons expressing GnRH1, Isl1 and/or Lhx2 become incorporated in the telencephalon. The integration of TNG neurons into the telencephalon together with the earlier widespread apoptosis in the TNG might be an explanation why the TNG in mammals and birds is much smaller compared to other vertebrates.


Assuntos
Apoptose , Diferenciação Celular/fisiologia , Cistos Glanglionares/patologia , Neurogênese/fisiologia , Bulbo Olfatório/metabolismo , Animais , Apoptose/fisiologia , Biomarcadores/metabolismo , Movimento Celular/fisiologia , Galinhas , Hormônio Liberador de Gonadotropina/metabolismo
8.
Invest Ophthalmol Vis Sci ; 59(10): 3869-3878, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30073347

RESUMO

Purpose: Different missense mutations in the single exon gene Mab21l2 have been identified in unrelated families with various bilateral eye malformations, including microphthalmia, anophthalmia, and coloboma, but the molecular function of Mab21l2 during eye development still remains largely unknown. Methods: We have established an in vivo Mab21l2-deficient eye development model in chick, by using a Mab21l2 RNA interference construct that we electroporated in ovo in prospective retinal cells. In addition, we designed a Mab21l2 gain-of-function electroporation vector. Mab21l2-modulated retinas were analyzed on consecutive sections in terms of morphology, and molecular markers for apoptosis, cell proliferation, and retinogenesis. Results: Our Mab21l2-deficient chick model mimics human ocular phenotypes. When Mab21l2 is downregulated prior to optic vesicle formation, the embryos develop anophthalmia, and Mab21l2 inhibition by optic cup stages results in a microphthalmic colobomatous phenotype. Our results show that inhibition of Mab21l2 affects cell proliferation, cell cycle exit, and the expression of Atoh7/Ath5, NeuroD4/Ath3, Isl1, Pax6, AP-2α, and Prox1. In addition, Mab21l2 overexpression hampers cell cycle exit and differentiation of retinal progenitor cells (RPCs). Conclusions: Our results highlight the importance of a regulated temporal expression of Mab21l2 during eye development: At early stages, Mab21l2 is required to maintain RPC proliferation and expansion of cell number; before retinogenesis, a decrease in Mab21l2 expression in proliferating RPCs is required for cell cycle exit and differentiation; during retinogenesis, Mab21l2 is chronologically upregulated in RGCs, followed by differentiated horizontal and amacrine cells and cone photoreceptor cells.


Assuntos
Proteínas do Olho/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Organogênese/fisiologia , Retina/embriologia , Animais , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Olho/embriologia , Proteínas do Olho/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microftalmia , Estudos Prospectivos
9.
Development ; 145(2)2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352015

RESUMO

The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression.


Assuntos
Proteínas Aviárias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neurogênese/fisiologia , Mucosa Olfatória/embriologia , Mucosa Olfatória/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Apoptose , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Sequência de Bases , Sítios de Ligação/genética , Proteína Morfogenética Óssea 4/metabolismo , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Embrião de Galinha , Feminino , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Neurogênese/genética , Gravidez , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/deficiência , Fatores de Transcrição SOXB1/genética , Regulação para Cima
10.
Biol Open ; 4(12): 1782-91, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26621830

RESUMO

Epithelial invagination is a morphological process in which flat cell sheets transform into three-dimensional structures through bending of the tissue. It is accompanied by apical constriction, in which the apical cell surface is reduced in relation to the basal cell surface. Although much is known about the intra-cellular molecular machinery driving apical constriction and epithelial invagination, information of how extra-cellular signals affect these processes remains insufficient. In this study we have established several in vivo assays of placodal invagination to explore whether the external signal BMP regulates processes connected to epithelial invagination. By inhibiting BMP activity in prospective cranial placodes, we provide evidence that BMP signals are required for RhoA and F-actin rearrangements, apical constriction, cell elongation and epithelial invagination. The failure of placode invagination after BMP inhibition appears to be a direct consequence of disrupted apical accumulation of RhoA and F-actin, rather than changes in cell death or proliferation. In addition, our results show that epithelial invagination and acquisition of placode-specific identities are two distinct and separable developmental processes. In summary, our results provide evidence that BMP signals promote epithelial invagination by acting upstream of the intracellular molecular machinery that drives apical constriction and cell elongation.

11.
Dev Biol ; 407(2): 256-64, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26407529

RESUMO

Previous results have shown that Bone Morphogenetic Protein (BMP) signaling is essential for lens specification and differentiation. How BMP signals are regulated in the prospective lens ectoderm is not well defined. To address this issue we have modulated BMP activity in a chicken embryo pre-lens ectoderm explant assay, and also studied transgenic mice, in which the type I BMP receptors, Bmpr1a and Acvr1, are deleted from the prospective lens ectoderm. Our results show that chicken embryo pre-lens ectoderm cells express BMPs and require BMP signaling for lens specification in vitro, and that in vivo inhibition of BMP signals in the mouse prospective lens ectoderm interrupts lens placode formation and prevents lens invagination. Furthermore, our results provide evidence that BMP expression is negatively auto-regulated in the lens-forming ectoderm, decreasing when the tissue is exposed to exogenous BMPs and increasing when BMP signaling is prevented. In addition, eyes lacking BMP receptors in the prospective lens placode develop coloboma in the adjacent wild type optic cup. In these eyes, Bmp7 expression increases in the ventral optic cup and the normal dorsal-ventral gradient of BMP signaling in the optic cup is disrupted. Pax2 becomes undetectable and expression of Sfrp2 increases in the ventral optic cup, suggesting that increased BMP signaling alter their expression, resulting in failure to close the optic fissure. In summary, our results suggest that negative and positive auto-regulation of BMP expression is important to regulate early eye development.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Olho/embriologia , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Células CHO , Embrião de Galinha , Coloboma/embriologia , Coloboma/metabolismo , Coloboma/patologia , Cricetinae , Cricetulus , Ectoderma/embriologia , Ectoderma/metabolismo , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Cristalino/embriologia , Cristalino/metabolismo , Camundongos Transgênicos
12.
Development ; 142(10): 1850-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25968316

RESUMO

The eye has served as a classical model to study cell specification and tissue induction for over a century. Nevertheless, the molecular mechanisms that regulate the induction and maintenance of eye-field cells, and the specification of neural retina cells are poorly understood. Moreover, within the developing anterior forebrain, how prospective eye and telencephalic cells are differentially specified is not well defined. In the present study, we have analyzed these issues by manipulating signaling pathways in intact chick embryo and explant assays. Our results provide evidence that at blastula stages, BMP signals inhibit the acquisition of eye-field character, but from neural tube/optic vesicle stages, BMP signals from the lens are crucial for the maintenance of eye-field character, inhibition of dorsal telencephalic cell identity and specification of neural retina cells. Subsequently, our results provide evidence that a Rax2-positive eye-field state is not sufficient for the progress to a neural retina identity, but requires BMP signals. In addition, our results argue against any essential role of Wnt or FGF signals during the specification of neural retina cells, but provide evidence that Wnt signals together with BMP activity are sufficient to induce cells of retinal pigment epithelial character. We conclude that BMP activity emanating from the lens ectoderm maintains eye-field identity, inhibits telencephalic character and induces neural retina cells. Our findings link the requirement of the lens ectoderm for neural retina specification with the molecular mechanism by which cells in the forebrain become specified as neural retina by BMP activity.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cristalino/metabolismo , Retina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Embrião de Galinha , Ectoderma/citologia , Ectoderma/metabolismo , Cristalino/citologia , Retina/citologia
13.
Dev Biol ; 388(1): 35-47, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24512687

RESUMO

Signaling pathways and transcription factors are crucial regulators of vertebrate neurogenesis, exerting their function in a spatial and temporal manner. Despite recent advances in our understanding of the molecular regulation of embryonic neurogenesis, little is known regarding how different signaling pathways interact to tightly regulate this process during the development of neuroepithelia. To address this, we have investigated the events lying upstream and downstream of a key neurogenic factor, the Cut-like homeodomain transcription factor-2 (Cux2), during embryonic neurogenesis in chick and mouse. By using the olfactory epithelium as a model for neurogenesis we have analyzed mouse embryos deficient in Cux2, as well as chick embryos exposed to Cux2 silencing (si) RNA or a Cux2 over-expression construct. We provide evidence that enhanced BMP activity increases Cux2 expression and suppresses olfactory neurogenesis in the chick olfactory epithelium. In addition, our results show that up-regulation of Cux2, either BMP-induced or ectopically over-expressed, reduce Delta1 expression and suppress proliferation. Interestingly, the loss of Cux2 activity, using mutant mice or siRNA in chick, also diminishes neurogenesis, Notch activity and cell proliferation in the olfactory epithelium. Our results suggest that controlled low levels of Cux2 activity are necessary for proper Notch signaling, maintenance of the proliferative pool and ongoing neurogenesis in the olfactory epithelium. Thus, we demonstrate a novel conserved mechanism in vertebrates in which levels of Cux2 activity play an important role for ongoing neurogenesis in the olfactory epithelium.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Neurogênese/fisiologia , Mucosa Olfatória/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula , Proliferação de Células , Embrião de Galinha , Inativação Gênica , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Notch/metabolismo
14.
Exp Cell Res ; 321(1): 11-6, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23939346

RESUMO

Although embryonic patterning and early development of the nervous system have been studied for decades, our understanding of how signals instruct ectodermal derivatives to acquire specific identities has only recently started to form a coherent picture. In this mini-review, we summarize recent findings and models of how a handful of well-known secreted signals influence progenitor cells in successive binary decisions to adopt various cell type specific differentiation programs.


Assuntos
Diferenciação Celular , Linhagem da Célula , Ectoderma/embriologia , Ectoderma/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Animais , Humanos
15.
Dev Neurobiol ; 74(6): 643-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24376126

RESUMO

N-myc belongs to the myc proto-oncogene family, which is involved in numerous cellular processes such as proliferation, growth, apoptosis, and differentiation. Conditional deletion of N-myc in the mouse nervous system disrupted brain development, indicating that N-myc plays an essential role during neural development. How the development of the olfactory epithelium and neurogenesis within are affected by the loss of N-myc has, however, not been determined. To address these issues, we examined an N-myc(Foxg1Cre) conditional mouse line, in which N-myc is depleted in the olfactory epithelium. First changes in N-myc mutants were detected at E11.5, with reduced proliferation and neurogenesis in a slightly smaller olfactory epithelium. The phenotype was more pronounced at E13.5, with a complete lack of Hes5-positive progenitor cells, decreased proliferation, and neurogenesis. In addition, stereological analyses revealed reduced cell size of post-mitotic neurons in the olfactory epithelium, which contributed to a smaller olfactory pit. Furthermore, we observed diminished proliferation and neurogenesis also in the vomeronasal organ, which likewise was reduced in size. In addition, the generation of gonadotropin-releasing hormone neurons was severely reduced in N-myc mutants. Thus, diminished neurogenesis and proliferation in combination with smaller neurons might explain the morphological defects in the N-myc depleted olfactory structures. Moreover, our results suggest an important role for N-myc in regulating ongoing neurogenesis, in part by maintaining the Hes5-positive progenitor pool. In summary, our results provide evidence that N-myc deficiency in the olfactory epithelium progressively diminishes proliferation and neurogenesis with negative consequences at structural and cellular levels.


Assuntos
Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/genética , Neurogênese/genética , Mucosa Olfatória/embriologia , Proteínas Proto-Oncogênicas c-myc/deficiência , Fatores Etários , Animais , Embrião de Mamíferos , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Mucosa Olfatória/citologia , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/enzimologia , Proteínas Proto-Oncogênicas c-myc/genética , Órgão Vomeronasal/citologia , Órgão Vomeronasal/embriologia
16.
Dev Growth Differ ; 55(1): 79-95, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23278869

RESUMO

This review focuses on how research, using chick as a model system, has contributed to our knowledge regarding the development of cranial placodes. This review highlights when and how molecular signaling events regulate early specification of placodal progenitor cells, as well as the development of individual placodes including morphological movements. In addition, we briefly describe various techniques used in chick that are important for studies in cell and developmental biology.


Assuntos
Encéfalo/embriologia , Placa Neural/embriologia , Crânio/embriologia , Animais , Padronização Corporal , Encéfalo/citologia , Diferenciação Celular , Movimento Celular , Embrião de Galinha , Galinhas/crescimento & desenvolvimento , Ectoderma/citologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Olho/citologia , Olho/embriologia , Placa Neural/citologia , Neurônios/citologia , Crânio/citologia , Células-Tronco/citologia , Gânglio Trigeminal/citologia
17.
Mol Vis ; 18: 2758-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23213276

RESUMO

PURPOSE: Survivin (Birc5) is the smallest member of the inhibitor of apoptosis (IAP) protein family, which regulates the cell cycle/apoptosis balance. The purpose of this study was to examine Survivin expression in the embryonic chick lens, in chick lens epithelial cell cultures, and in the postnatal mouse lens. METHODS: Survivin expression was examined using a combination of quantitative real-time polymerase chain reaction, western blotting, and immunocytochemistry. To correlate Survivin expression with the timing of proliferation, we determined the profile of cell proliferation in the developing lens using the cell cycle marker proliferating cell nuclear antigen (PCNA) in quantitative western blotting and immunocytochemistry studies. We also examined the expression of PCNA and the extent of denucleation using terminal deoxynucleotidyl transferase (TdT)-mediated biotin-dUTP nick-end labeling (TUNEL) of lentoids (lens fiber-like cells) during chick lens epithelial cell differentiation in vitro. RESULTS: At embryonic day (ED) 4, Survivin immunostaining was present in two pools in lens epithelial cells and fiber cells: cytoplasmic and nuclear. The nuclear staining became more pronounced as the lens epithelial cells differentiated into lens fiber cells. At ED12, Survivin staining was observed in lens fiber cell nuclei containing marginalized chromatin, indicative of early denucleation events. Using western blotting, Survivin expression peaked at ED6, diminishing thereafter. This profile of expression correlated with the events in chick lens epithelial cell cultures: i) increased Survivin expression was associated with an increase in PCNA staining up to day 6 of culture and ii) downregulation of Survivin expression at day 8 of culture was coincident with a dramatic decrease in PCNA staining and an increase in TdT-mediated biotin-dUTP nick-end labeling in lentoids. In early postnatal mouse lenses, Survivin and PCNA were highly expressed and decreased thereafter during postnatal lens maturation. CONCLUSIONS: Survivin is expressed during chick and mouse lens development and in chick lens epithelial cell cultures. High levels of Survivin expression correlated with high rates of proliferation of lens epithelial cells at early stages of development. Downregulation of Survivin expression with development and its progressive localization to the nuclei of lens fiber cells was coincident with a decrease in cell proliferation and increased denucleation in differentiating lens fiber cells. These studies suggest an important role for Survivin as a dual regulator of lens epithelial cell proliferation and lens fiber cell differentiation.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Inibidoras de Apoptose/genética , Cristalino/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas Repressoras/genética , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Diferenciação Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Células Epiteliais/citologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Proteínas Inibidoras de Apoptose/metabolismo , Cristalino/citologia , Camundongos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Survivina
18.
Mol Biol Cell ; 23(16): 3266-74, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22718906

RESUMO

In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals.


Assuntos
Proteína Morfogenética Óssea 4/fisiologia , Cristalinas/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Mitose , Animais , Células CHO , Pontos de Checagem do Ciclo Celular , Embrião de Galinha , Cricetinae , Cristalinas/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Replicação do DNA , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/citologia , Cristalino/embriologia , Cristalino/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Ativação Transcricional
19.
Eur J Neurosci ; 34(10): 1516-28, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22103410

RESUMO

During early vertebrate development, the embryonic ectoderm becomes subdivided into neural, neural plate border (border) and epidermal regions. The nervous system is derived from the neural and border domains which, respectively, give rise to the central and peripheral nervous systems. To better understand the functional nervous system we need to know how individual neurons are specified and connected. Our understanding of the early development of the peripheral nervous system has been lagging compared to knowledge regarding central nervous system and epidermal cell lineage decision. Recent advances have shown when and how the specification of border cells is initiated. One important insight is that border specification is already initiated at blastula stages, and can be molecularly and temporally distinguished from rostrocaudal regionalisation of the border. From findings in several species, it is clear that Wnt, Bone Morphogenetic Protein and Fibroblast Growth Factor signals play important roles during the specification and regionalisation of the border. In this review, we highlight the individual roles of these signals and compare models of border specification, including a new model that describes how temporal coordination and epistatic interactions of extracellular signals result in the specification and regionalisation of border cells.


Assuntos
Ectoderma/anatomia & histologia , Ectoderma/embriologia , Placa Neural/anatomia & histologia , Placa Neural/embriologia , Animais , Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Linhagem da Célula , Ectoderma/metabolismo , Células Epidérmicas , Fatores de Crescimento de Fibroblastos/metabolismo , Modelos Anatômicos , Placa Neural/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo
20.
Dev Dyn ; 240(8): 1917-28, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21761477

RESUMO

Bone morphogenetic protein (BMP) signals are essential for lens development. However, the temporal requirement of BMP activity during early events of lens development has remained elusive. To investigate this question, we have used gain- and loss-of-function analyses in chick explant and intact embryo assays. Here, we show that BMP activity is both required and sufficient to induce L-Maf expression, whereas the onset of δ-crystallin and initial elongation of primary lens fibre cells are BMP-independent. Moreover, before lens placode formation and L-Maf onset, but not after, prospective lens placodal cells can switch to an olfactory placodal fate in response to decreased BMP activity. In addition, L-Maf is sufficient to up-regulate δ-crystallin independent of BMP signals. Taken together, these results show that before L-Maf induction BMP activity is required for lens specification, whereas after L-Maf up-regulation, the early differentiation of primary lens fibre cells occurs independent of BMP signals.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Cristalino/citologia , Cristalino/embriologia , Fatores de Transcrição Maf/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Embrião de Galinha/anatomia & histologia , Embrião de Galinha/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Queratinas/genética , Queratinas/metabolismo , Fatores de Transcrição Maf/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/fisiologia , Proteínas Smad/genética , Proteínas Smad/metabolismo , delta-Cristalinas/genética , delta-Cristalinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA