Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Rev Cardiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030270

RESUMO

For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases. While data exist on the effects of gravitational and acceleration (G) forces on human physiology, data on the effects of the aerospace environment in unselected members of the public, and particularly in those with clinically significant pathology, are limited. Although short in duration, these high acceleration forces can potentially either impair the experience or, more seriously, pose a risk to health in some individuals. Rather than expose individuals with existing pathology to G forces to collect data, computational modelling might be useful to predict the nature and severity of cardiovascular diseases that are of sufficient risk to restrict access, require modification, or suggest further investigation or training before flight. In this Review, we explore state-of-the-art, zero-dimensional, compartmentalized models of human cardiovascular pathophysiology that can be used to simulate the effects of acceleration forces, homeostatic regulation and ventilation-perfusion matching, using data generated by long-arm centrifuge facilities of the US National Aeronautics and Space Administration and the European Space Agency to risk stratify individuals and help to improve safety in commercial suborbital spaceflight.

2.
Expert Rev Cardiovasc Ther ; 22(7): 339-345, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949642

RESUMO

BACKGROUND: Triple antithrombotic therapy (TAT) with aspirin, a P2Y12 inhibitor, and oral anticoagulation in patients with atrial fibrillation (AF) undergoing percutaneous coronary intervention (PCI) raises concerns about increased bleeding. Regimens incorporating more potent P2Y12 inhibitors over clopidogrel have not been investigated adequately. RESEARCH DESIGN AND METHODS: A retrospective observational study was performed on 387 patients with AF receiving TAT for 1 month (n = 236) or ≤1 week (n = 151) after PCI. Major and clinically relevant non-major bleeding and major adverse cardiac and cerebrovascular events (MACCE) were assessed up to 30 days post-procedure. RESULTS: Bleeding was less frequent with ≤1 week versus 1 month of TAT (3.3 vs 9.3%; p = 0.025) while MACCE were similar (4.6 vs 4.7%; p = 0.998). No differences in bleeding or MACCE were observed between ticagrelor/prasugrel and clopidogrel regimens. For patients receiving ≤1 week of TAT, no excess of MACCE was seen in the subgroup given no further aspirin post-PCI compared with those given aspirin for up to 1 week (3.6 vs 5.2%). CONCLUSIONS: TAT post-PCI for ≤1 week was associated with less bleeding despite greater use of ticagrelor/prasugrel but similar MACCE versus 1-month TAT. These findings support further studies on safety and efficacy of dual therapy with ticagrelor/prasugrel immediately after PCI.


Assuntos
Anticoagulantes , Aspirina , Fibrilação Atrial , Clopidogrel , Quimioterapia Combinada , Hemorragia , Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária , Antagonistas do Receptor Purinérgico P2Y , Humanos , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/complicações , Intervenção Coronária Percutânea/métodos , Masculino , Feminino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Hemorragia/induzido quimicamente , Aspirina/administração & dosagem , Aspirina/uso terapêutico , Aspirina/efeitos adversos , Clopidogrel/administração & dosagem , Clopidogrel/uso terapêutico , Clopidogrel/efeitos adversos , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/uso terapêutico , Anticoagulantes/administração & dosagem , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Fibrinolíticos/administração & dosagem , Fibrinolíticos/uso terapêutico , Fibrinolíticos/efeitos adversos , Idoso de 80 Anos ou mais , Ticagrelor/administração & dosagem , Ticagrelor/uso terapêutico , Ticagrelor/efeitos adversos
3.
Am J Physiol Heart Circ Physiol ; 327(1): H182-H190, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787386

RESUMO

Murray's law has been viewed as a fundamental law of physiology. Relating blood flow ([Formula: see text]) to vessel diameter (D) ([Formula: see text]·âˆ·D3), it dictates minimum lumen area (MLA) targets for coronary bifurcation percutaneous coronary intervention (PCI). The cubic exponent (3.0), however, has long been disputed, with alternative theoretical derivations, arguing this should be closer to 2.33 (7/3). The aim of this meta-analysis was to quantify the optimum flow-diameter exponent in human and mammalian coronary arteries. We conducted a systematic review and meta-analysis of all articles quantifying an optimum flow-diameter exponent for mammalian coronary arteries within the Cochrane library, PubMed Medline, Scopus, and Embase databases on 20 March 2023. A random-effects meta-analysis was used to determine a pooled flow-diameter exponent. Risk of bias was assessed with the National Institutes of Health (NIH) quality assessment tool, funnel plots, and Egger regression. From a total of 4,772 articles, 18 were suitable for meta-analysis. Studies included data from 1,070 unique coronary trees, taken from 372 humans and 112 animals. The pooled flow diameter exponent across both epicardial and transmural arteries was 2.39 (95% confidence interval: 2.24-2.54; I2 = 99%). The pooled exponent of 2.39 showed very close agreement with the theoretical exponent of 2.33 (7/3) reported by Kassab and colleagues. This exponent may provide a more accurate description of coronary morphometric scaling in human and mammalian coronary arteries, as compared with Murray's original law. This has important implications for the assessment, diagnosis, and interventional treatment of coronary artery disease.


Assuntos
Circulação Coronária , Vasos Coronários , Animais , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Modelos Cardiovasculares , Intervenção Coronária Percutânea
4.
Comput Biol Med ; 173: 108299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537564

RESUMO

BACKGROUND: Myocardial ischaemia results from insufficient coronary blood flow. Computed virtual fractional flow reserve (vFFR) allows quantification of proportional flow loss without the need for invasive pressure-wire testing. In the current study, we describe a novel, conductivity model of side branch flow, referred to as 'leak'. This leak model is a function of taper and local pressure, the latter of which may change radically when focal disease is present. This builds upon previous techniques, which either ignore side branch flow, or rely purely on anatomical factors. This study aimed to describe a new, conductivity model of side branch flow and compare this with established anatomical models. METHODS AND RESULTS: The novel technique was used to quantify vFFR, distal absolute flow (Qd) and microvascular resistance (CMVR) in 325 idealised 1D models of coronary arteries, modelled from invasive clinical data. Outputs were compared to an established anatomical model of flow. The conductivity model correlated and agreed with the reference model for vFFR (r = 0.895, p < 0.0001; +0.02, 95% CI 0.00 to + 0.22), Qd (r = 0.959, p < 0.0001; -5.2 mL/min, 95% CI -52.2 to +13.0) and CMVR (r = 0.624, p < 0.0001; +50 Woods Units, 95% CI -325 to +2549). CONCLUSION: Agreement between the two techniques was closest for vFFR, with greater proportional differences seen for Qd and CMVR. The conductivity function assumes vessel taper was optimised for the healthy state and that CMVR was not affected by local disease. The latter may be addressed with further refinement of the technique or inferred from complementary image data. The conductivity technique may represent a refinement of current techniques for modelling coronary side-branch flow. Further work is needed to validate the technique against invasive clinical data.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Humanos , Vasos Coronários , Angiografia Coronária/métodos , Hemodinâmica , Valor Preditivo dos Testes
5.
Eur Heart J Digit Health ; 4(4): 283-290, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37538147

RESUMO

Aims: Over the last ten years, virtual Fractional Flow Reserve (vFFR) has improved the utility of Fractional Flow Reserve (FFR), a globally recommended assessment to guide coronary interventions. Although the speed of vFFR computation has accelerated, techniques utilising full 3D computational fluid dynamics (CFD) solutions rather than simplified analytical solutions still require significant time to compute. Methods and results: This study investigated the speed, accuracy and cost of a novel 3D-CFD software method based upon a graphic processing unit (GPU) computation, compared with the existing fastest central processing unit (CPU)-based 3D-CFD technique, on 40 angiographic cases. The novel GPU simulation was significantly faster than the CPU method (median 31.7 s (Interquartile Range (IQR) 24.0-44.4s) vs. 607.5 s (490-964 s), P < 0.0001). The novel GPU technique was 99.6% (IQR 99.3-99.9) accurate relative to the CPU method. The initial cost of the GPU hardware was greater than the CPU (£4080 vs. £2876), but the median energy consumption per case was significantly less using the GPU method (8.44 (6.80-13.39) Wh vs. 2.60 (2.16-3.12) Wh, P < 0.0001). Conclusion: This study demonstrates that vFFR can be computed using 3D-CFD with up to 28-fold acceleration than previous techniques with no clinically significant sacrifice in accuracy.

6.
Front Cardiovasc Med ; 10: 1159160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485258

RESUMO

Background: Increased coronary microvascular resistance (CMVR) is associated with coronary microvascular dysfunction (CMD). Although CMD is more common in women, sex-specific differences in CMVR have not been demonstrated previously. Aim: To compare CMVR between men and women being investigated for chest pain. Methods and results: We used a computational fluid dynamics (CFD) model of human coronary physiology to calculate absolute CMVR based on invasive coronary angiographic images and pressures in 203 coronary arteries from 144 individual patients. CMVR was significantly higher in women than men (860 [650-1,205] vs. 680 [520-865] WU, Z = -2.24, p = 0.025). None of the other major subgroup comparisons yielded any differences in CMVR. Conclusion: CMVR was significantly higher in women compared with men. These sex-specific differences may help to explain the increased prevalence of CMD in women.

7.
Lancet Digit Health ; 5(7): e467-e476, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37391266

RESUMO

The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease. Clinicians are therefore often presented with health app data accompanied by a diverse range of concerns and queries. Herein, we assess whether these devices are accurate, their outputs validated, and whether they are suitable for professionals to make management decisions. We review underpinning methods and technologies and explore the evidence supporting the use of these devices as diagnostic and monitoring tools in hypertension, arrhythmia, heart failure, coronary artery disease, pulmonary hypertension, and valvular heart disease. Used correctly, they might improve health care and support research.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Doença da Artéria Coronariana , Insuficiência Cardíaca , Dispositivos Eletrônicos Vestíveis , Humanos , Doenças Cardiovasculares/diagnóstico
8.
Eur Heart J Digit Health ; 4(2): 81-89, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36974271

RESUMO

Aims: Ischaemic heart disease results from insufficient coronary blood flow. Direct measurement of absolute flow (mL/min) is feasible, but has not entered routine clinical practice in most catheterization laboratories. Interventional cardiologists, therefore, rely on surrogate markers of flow. Recently, we described a computational fluid dynamics (CFD) method for predicting flow that differentiates inlet, side branch, and outlet flows during angiography. In the current study, we evaluate a new method that regionalizes flow along the length of the artery. Methods and results: Three-dimensional coronary anatomy was reconstructed from angiograms from 20 patients with chronic coronary syndrome. All flows were computed using CFD by applying the pressure gradient to the reconstructed geometry. Side branch flow was modelled as a porous wall boundary. Side branch flow magnitude was based on morphometric scaling laws with two models: a homogeneous model with flow loss along the entire arterial length; and a regionalized model with flow proportional to local taper. Flow results were validated against invasive measurements of flow by continuous infusion thermodilution (Coroventis™, Abbott). Both methods quantified flow relative to the invasive measures: homogeneous (r 0.47, P 0.006; zero bias; 95% CI -168 to +168 mL/min); regionalized method (r 0.43, P 0.013; zero bias; 95% CI -175 to +175 mL/min). Conclusion: During angiography and pressure wire assessment, coronary flow can now be regionalized and differentiated at the inlet, outlet, and side branches. The effect of epicardial disease on agreement suggests the model may be best targeted at cases with a stenosis close to side branches.

9.
Cardiol Res Pract ; 2023: 3875924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776959

RESUMO

Background: Ischaemia with nonobstructive coronary arteries is most commonly caused by coronary microvascular dysfunction but remains difficult to diagnose without invasive testing. Myocardial blood flow (MBF) can be quantified noninvasively on stress perfusion cardiac magnetic resonance (CMR) or positron emission tomography but neither is routinely used in clinical practice due to practical and technical constraints. Quantification of coronary sinus (CS) flow may represent a simpler method for CMR MBF quantification. 4D flow CMR offers comprehensive intracardiac and transvalvular flow quantification. However, it is feasibility to quantify MBF remains unknown. Methods: Patients with acute myocardial infarction (MI) and healthy volunteers underwent CMR. The CS contours were traced from the 2-chamber view. A reformatted phase contrast plane was generated through the CS, and flow was quantified using 4D flow CMR over the cardiac cycle and normalised for myocardial mass. MBF and resistance (MyoR) was determined in ten healthy volunteers, ten patients with myocardial infarction (MI) without microvascular obstruction (MVO), and ten with known MVO. Results: MBF was quantified in all 30 subjects. MBF was highest in healthy controls (123.8 ± 48.4 mL/min), significantly lower in those with MI (85.7 ± 30.5 mL/min), and even lower in those with MI and MVO (67.9 ± 29.2 mL/min/) (P < 0.01 for both differences). Compared with healthy controls, MyoR was higher in those with MI and even higher in those with MI and MVO (0.79 (±0.35) versus 1.10 (±0.50) versus 1.50 (±0.69), P=0.02). Conclusions: MBF and MyoR can be quantified from 4D flow CMR. Resting MBF was reduced in patients with MI and MVO.

10.
Nat Cardiovasc Res ; 1(7): 611-616, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35865080

RESUMO

Fractional flow reserve (FFR) is the current gold-standard invasive assessment of coronary artery disease (CAD). FFR reports coronary blood flow (CBF) as a fraction of a hypothetical and unknown normal value. Although used routinely to diagnose CAD and guide treatment, how accurately FFR predicts actual CBF changes remains unknown. Here we compared fractional CBF with the absolute CBF (aCBF in mL/min), measured with a computational method during standard angiography and pressure-wire assessment, on 203 diseased arteries (143 patients). We found a substantial correlation between the two measurements (r 0.89, Cohen's Kappa 0.71). Concordance between fractional and absolute CBF reduction was high when FFR was >0.80 (91%), but reduced when FFR was ≤0.80 (81%), 0.70-0.80 (68%) and, particularly 0.75-0.80 (62%). Discordance was associated with coronary microvascular resistance, vessel diameter and mass of myocardium subtended, all factors to which FFR is agnostic. Assessment of aCBF complements FFR, and may be valuable to assess CBF, particularly in cases within the FFR 'grey-zone'.

11.
Eur Heart J Digit Health ; 3(3): 481-488, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36712154

RESUMO

Aims: Angiography-derived fractional flow reserve (angio-FFR) permits physiological lesion assessment without the need for an invasive pressure wire or induction of hyperaemia. However, accuracy is limited by assumptions made when defining the distal boundary, namely coronary microvascular resistance (CMVR). We sought to determine whether machine learning (ML) techniques could provide a patient-specific estimate of CMVR and therefore improve the accuracy of angio-FFR. Methods and results: Patients with chronic coronary syndromes underwent coronary angiography with FFR assessment. Vessel-specific CMVR was computed using a three-dimensional computational fluid dynamics simulation with invasively measured proximal and distal pressures applied as boundary conditions. Predictive models were created using non-linear autoregressive moving average with exogenous input (NARMAX) modelling with computed CMVR as the dependent variable. Angio-FFR (VIRTUheart™) was computed using previously described methods. Three simulations were run: using a generic CMVR value (Model A); using ML-predicted CMVR based upon simple clinical data (Model B); and using ML-predicted CMVR also incorporating echocardiographic data (Model C). The diagnostic (FFR ≤ or >0.80) and absolute accuracies of these models were compared. Eighty-four patients underwent coronary angiography with FFR assessment in 157 vessels. The mean measured FFR was 0.79 (±0.15). The diagnostic and absolute accuracies of each personalized model were: (A) 73% and ±0.10; (B) 81% and ±0.07; and (C) 89% and ±0.05, P < 0.001. Conclusion: The accuracy of angio-FFR was dependent in part upon CMVR estimation. Personalization of CMVR from standard clinical data resulted in a significant reduction in angio-FFR error.

12.
Front Cardiovasc Med ; 8: 735008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746253

RESUMO

The current management of acute coronary syndromes (ACS) is with an invasive strategy to guide treatment. However, identifying the lesions which are physiologically significant can be challenging. Non-invasive imaging is generally not appropriate or timely in the acute setting, so the decision is generally based upon visual assessment of the angiogram, supplemented in a small minority by invasive pressure wire studies using fractional flow reserve (FFR) or related indices. Whilst pressure wire usage is slowly increasing, it is not feasible in many vessels, patients and situations. Limited evidence for the use of FFR in non-ST elevation (NSTE) ACS suggests a 25% change in management, compared with traditional assessment, with a shift from more to less extensive revascularisation. Virtual (computed) FFR (vFFR), which uses a 3D model of the coronary arteries constructed from the invasive angiogram, and application of the physical laws of fluid flow, has the potential to be used more widely in this situation. It is less invasive, fast and can be integrated into catheter laboratory software. For severe lesions, or mild disease, it is probably not required, but it could improve the management of moderate disease in 'real time' for patients with non-ST elevation acute coronary syndromes (NSTE-ACS), and in bystander disease in ST elevation myocardial infarction. Its practicability and impact in the acute setting need to be tested, but the underpinning science and potential benefits for rapid and streamlined decision-making are enticing.

13.
Sci Rep ; 11(1): 19694, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608218

RESUMO

Three dimensional (3D) coronary anatomy, reconstructed from coronary angiography (CA), is now being used as the basis to compute 'virtual' fractional flow reserve (vFFR), and thereby guide treatment decisions in patients with coronary artery disease (CAD). Reconstruction accuracy is therefore important. Yet the methods required remain poorly validated. Furthermore, the magnitude of vFFR error arising from reconstruction is unkown. We aimed to validate a method for 3D CA reconstruction and determine the effect this had upon the accuracy of vFFR. Clinically realistic coronary phantom models were created comprosing seven standard stenoses in aluminium and 15 patient-based 3D-printed, imaged with CA, three times, according to standard clinical protocols, yielding 66 datasets. Each was reconstructed using epipolar line projection and intersection. All reconstructions were compared against the real phantom models in terms of minimal lumen diameter, centreline and surface similarity. 3D-printed reconstructions (n = 45) and the reference files from which they were printed underwent vFFR computation, and the results were compared. The average error in reconstructing minimum lumen diameter (MLD) was 0.05 (± 0.03 mm) which was < 1% (95% CI 0.13-1.61%) compared with caliper measurement. Overall surface similarity was excellent (Hausdorff distance 0.65 mm). Errors in 3D CA reconstruction accounted for an error in vFFR of ± 0.06 (Bland Altman 95% limits of agreement). Errors arising from the epipolar line projection method used to reconstruct 3D coronary anatomy from CA are small but contribute to clinically relevant errors when used to compute vFFR.


Assuntos
Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico , Imageamento Tridimensional , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/etiologia , Vasos Coronários/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Reprodutibilidade dos Testes
15.
Eur Heart J Digit Health ; 2(2): 263-270, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34223175

RESUMO

AIMS: To extend the benefits of physiologically guided percutaneous coronary intervention to many more patients, angiography-derived, or 'virtual' fractional flow reserve (vFFR) has been developed, in which FFR is computed, based upon the images, instead of being measured invasively. The effect of operator experience with these methods upon vFFR accuracy remains unknown. We investigated variability in vFFR results based upon operator experience with image-based computational modelling techniques. METHODS AND RESULTS: Virtual fractional flow reserve was computed using a proprietary method (VIRTUheart) from the invasive angiograms of patients with coronary artery disease. Each case was processed by an expert (>100 vFFR cases) and a non-expert (<20 vFFR cases) operator and results were compared. The primary outcome was the variability in vFFR between experts and non-experts and the impact this had upon treatment strategy (PCI vs. conservative management). Two hundred and thirty-one vessels (199 patients) were processed. Mean non-expert and expert vFFRs were similar overall [0.76 (0.13) and 0.77 (0.16)] but there was significant variability between individual results (variability coefficient 12%, intraclass correlation coefficient 0.58), with only moderate agreement (κ = 0.46), and this led to a statistically significant change in management strategy in 27% of cases. Variability was significantly lower, and agreement higher, for expert operators; a change in their recommended management occurred in 10% of repeated expert measurements and 14% of inter-expert measurements. CONCLUSION: Virtual fractional flow reserve results are influenced by operator experience of vFFR processing. This had implications for treatment allocation. These results highlight the importance of training and quality assurance to ensure reliable, repeatable vFFR results.

16.
Wellcome Open Res ; 6: 73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095509

RESUMO

Background: Four-dimensional (4D) flow cardiovascular magnetic resonance imaging (MRI) is an emerging technique used for intra-cardiac blood flow assessment. The role of 4D flow cardiovascular MRI in the assessment of trans-valvular flow in patients with atrial fibrillation (AF) has not previously been assessed. The purpose of this study was to assess the feasibility, image quality, and internal validity of 4D flow cardiovascular MRI in the quantification of trans-valvular flow in patients with AF. Methods: Patients with AF and healthy controls in sinus rhythm underwent cardiovascular MRI, including 4D flow studies. Quality assurance checks were done on the raw data and streamlines. Consistency was investigated by trans-valvular flow assessment between the mitral valve (MV) and the aortic valve (AV). Results: Eight patients with AF (88% male, mean age 62±13 years, mean heart rate (HR) 83±16 beats per minute (bpm)) were included and compared with ten healthy controls (70% male, mean age 41±20 years, mean HR 68.5±9 bpm). All scans were of either good quality with minimal blurring artefacts, or excellent quality with no artefacts. No significant bias was observed between the AV and MV stroke volumes in either healthy controls (-4.8, 95% CI -15.64 to 6.04; P=0.34) or in patients with AF (1.64, 95% CI -4.7 to 7.94; P=0.56). A significant correlation was demonstrated between MV and AV stroke volumes in both healthy controls (r=0.87, 95% CI 0.52 to 0.97; P=0.001) and in AF patients (r=0.82, 95% CI 0.26 to 0.97; P=0.01). Conclusions: In patients with AF, 4D flow cardiovascular MRI is feasible with good image quality, allowing for quantification of trans-valvular flow.

17.
Can J Cardiol ; 37(10): 1530-1538, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34126226

RESUMO

BACKGROUND: Using fractional flow reserve (FFR) to guide percutaneous coronary intervention for patients with coronary artery disease (CAD) improves clinical decision making but remains underused. Virtual FFR (vFFR), computed from angiographic images, permits physiologic assessment without a pressure wire and can be extended to virtual coronary intervention (VCI) to facilitate treatment planning. This study investigated the effect of adding vFFR and VCI to angiography in patient assessment and management. METHODS: Two cardiologists independently reviewed clinical data and angiograms of 50 patients undergoing invasive management of coronary syndromes, and their management plans were recorded. The vFFRs were computed and disclosed, and the cardiologists submitted revised plans. Then, using VCI, the physiologic results of various interventional strategies were shown and further revision was invited. RESULTS: Disclosure of vFFR led to a change in strategy in 27%. VCI led to a change in stent size in 48%. Disclosure of vFFR and VCI resulted in an increase in operator confidence in their decision. Twelve cases were reviewed by 6 additional cardiologists. There was limited agreement in the management plans between cardiologists based on either angiography (kappa = 0.31) or vFFR (kappa = 0.39). CONCLUSIONS: vFFR has the potential to alter decision making, and VCI can guide stent sizing. However, variability in management strategy remains considerable between operators, even when presented with the same anatomic and physiologic data.


Assuntos
Síndrome Coronariana Aguda/cirurgia , Cateteres Cardíacos , Vasos Coronários/cirurgia , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Laboratórios , Intervenção Coronária Percutânea/métodos , Terapia de Exposição à Realidade Virtual/métodos , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/fisiopatologia , Idoso , Tomada de Decisão Clínica , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , Feminino , Humanos , Masculino , Estudos Retrospectivos
18.
Quant Imaging Med Surg ; 11(4): 1470-1482, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33816183

RESUMO

BACKGROUND: Left ventricular (LV) kinetic energy (KE) assessment by four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) may offer incremental value over routine assessment in aortic stenosis (AS). The main objective of this study is to investigate the LV KE in patients with AS before and after the valve intervention. In addition, this study aimed to investigate if LV KE offers incremental value for its association to the six-minute walk test (6MWT) or LV remodelling post-intervention. METHODS: We recruited 18 patients with severe AS. All patients underwent transthoracic echocardiography for mean pressure gradient (mPG), CMR including 4D flow and 6MWT. Patients were invited for post-valve intervention follow-up CMR at 3 months and twelve patients returned for follow-up CMR. KE assessment of LV blood flow and the components (direct, delayed, retained and residual) were carried out for all cases. LV KE parameters were normalised to LV end-diastolic volume (LVEDV). RESULTS: For LV blood flow KE assessment, the metrics including time delay (TD) for peak E-wave from base to mid-ventricle (14±48 vs. 2.5±9.75 ms, P=0.04), direct (4.91±5.07 vs. 1.86±1.72 µJ, P=0.01) and delayed (2.46±3.13 vs. 1.38±1.15 µJ, P=0.03) components of LV blood flow demonstrated a significant change between pre- and post-valve intervention. Only LV KEiEDV (r=-0.53, P<0.01), diastolic KEiEDV (r=-0.53, P<0.01) and Ewave KEiEDV (r=-0.38, P=0.04) demonstrated association to the 6MWT. However, Pre-operative LV KEiEDV (r=0.67, P=0.02) demonstrated association to LV remodelling post valve intervention. CONCLUSIONS: LV blood flow KE is associated with 6MWT and LV remodelling in patients with AS. LV KE assessment provides incremental value over routine LV function and pressure gradient (PG) assessment in AS.

19.
Heart ; 107(10): 783-789, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33419878

RESUMO

The role of 'stand-alone' coronary angiography (CAG) in the management of patients with chronic coronary syndromes is the subject of debate, with arguments for its replacement with CT angiography on the one hand and its confinement to the interventional cardiac catheter laboratory on the other. Nevertheless, it remains the standard of care in most centres. Recently, computational methods have been developed in which the laws of fluid dynamics can be applied to angiographic images to yield 'virtual' (computed) measures of blood flow, such as fractional flow reserve. Together with the CAG itself, this technology can provide an 'all-in-one' anatomical and functional investigation, which is particularly useful in the case of borderline lesions. It can add to the diagnostic value of CAG by providing increased precision and reduce the need for further non-invasive and functional tests of ischaemia, at minimal cost. In this paper, we place this technology in context, with emphasis on its potential to become established in the diagnostic workup of patients with suspected coronary artery disease, particularly in the non-interventional setting. We discuss the derivation and reliability of angiographically derived fractional flow reserve (CAG-FFR) as well as its limitations and how CAG-FFR could be integrated within existing national guidance. The assessment of coronary physiology may no longer be the preserve of the interventional cardiologist.


Assuntos
Angiografia por Tomografia Computadorizada , Doença das Coronárias/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico , Tomada de Decisão Clínica , Ponte de Artéria Coronária , Doença das Coronárias/cirurgia , Humanos
20.
Eur Heart J Digit Health ; 2(4): 616-625, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35599684

RESUMO

Aims: International guidelines mandate the use of fractional flow reserve (FFR) and/or non-hyperaemic pressure ratios to assess the physiological significance of moderate coronary artery lesions to guide revascularization decisions. However, they remain underused such that visual estimation of lesion severity continues to be the predominant decision-making tool. It would be pragmatic to have an improved understanding of the relationship between lesion morphology and haemodynamics. The aim of this study was to compute virtual FFR (vFFR) in idealized coronary artery geometries with a variety of stenosis and vessel characteristics. Methods and results: Coronary artery geometries were modelled, based upon physiologically realistic branched arteries. Common stenosis characteristics were studied, including % narrowing, length, eccentricity, shape, number, position relative to branch, and distal (myocardial) resistance. Computational fluid dynamics modelling was used to calculate vFFRs using the VIRTUheart™ system. Percentage lesion severity had the greatest effect upon FFR. Any ≥80% diameter stenosis in two views (i.e. concentric) was physiologically significant (FFR ≤ 0.80), irrespective of length, shape, or vessel diameter. Almost all eccentric stenoses and all 50% concentric stenoses were physiologically non-significant, whilst 70% uniform concentric stenoses about 10 mm long straddled the ischaemic threshold (FFR 0.80). A low microvascular resistance (MVR) reduced FFR on average by 0.05, and a high MVR increased it by 0.03. Conclusion: Using computational modelling, we have produced an analysis of vFFR that relates stenosis characteristics to haemodynamic significance. The strongest predictor of a positive vFFR was a concentric, ≥80% diameter stenosis. The importance of MVR was quantified. Other lesion characteristics have a limited impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA