Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0080824, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194210

RESUMO

Osteomyelitis caused by Staphylococcus aureus can involve the persistent infection of osteocytes. We sought to determine if current clinically utilized antibiotics were capable of clearing an intracellular osteocyte S. aureus infection. Rifampicin, vancomycin, levofloxacin, ofloxacin, amoxicillin, oxacillin, doxycycline, linezolid, gentamicin, and tigecycline were assessed for their minimum inhibitory concentration (MIC) and minimum bactericidal concentrations against 12 S. aureus strains, at pH 5.0 and 7.2 to mimic lysosomal and cytoplasmic environments, respectively. Those antibiotics whose bone estimated achievable concentration was commonly above their respective MIC for the strains tested were further assayed in a human osteocyte infection model under acute and chronic conditions. Osteocyte-like cells were treated at 1×, 4×, and 10× the MIC for 1 and 7 days following infection (acute model), or at 15 and 21 days of infection (chronic model). The intracellular effectivity of each antibiotic was measured in terms of CFU reduction, small colony variant formation, and bacterial mRNA expression change. Only rifampicin, levofloxacin, and linezolid reduced intracellular CFU numbers significantly in the acute model. Consistent with the transition to a non-culturable state, few if any CFU could be recovered from the chronic model. However, no treatment in either model reduced the quantity of bacterial mRNA or prevented non-culturable bacteria from returning to a culturable state. These findings indicate that S. aureus adapts phenotypically during intracellular infection of osteocytes, adopting a reversible quiescent state that is protected against antibiotics, even at 10× their MIC. Thus, new therapeutic approaches are necessary to cure S. aureus intracellular infections in osteomyelitis.

2.
Elife ; 132024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910553

RESUMO

Examination of bacteria/host cell interactions is important for understanding the aetiology of many infectious diseases. The colony forming unit (CFU) has been the standard for quantifying bacterial burden for the past century, however, this suffers from low sensitivity and is dependent on bacterial culturability in vitro. Our data demonstrate the discrepancy between the CFU and bacterial genome copy number in an osteomyelitis-relevant co-culture system and we confirm diagnosis and quantify bacterial load in clinical bone specimens. This study provides an improved workflow for the quantification of bacterial burden in such cases.


Assuntos
Osteomielite , Osteomielite/microbiologia , Humanos , Carga Bacteriana , Técnicas de Cocultura , Contagem de Colônia Microbiana , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação
3.
Front Cell Infect Microbiol ; 14: 1403289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915921

RESUMO

Staphylococcus aureus is a major causative pathogen of osteomyelitis. Intracellular infections of resident bone cells including osteocytes can persist despite gold-standard clinical intervention. The mechanisms by which intracellular S. aureus evades antibiotic therapy are unknown. In this study, we utilised an in vitro S. aureus infection model of human osteocytes to investigate whether antibiotic-mediated dysregulation of autophagy contributes to this phenomenon. Infected or non-infected osteocyte-like cells were exposed to combinations of rifampicin, vancomycin, and modulators of autophagy. Intracellular bacterial growth characteristics were assessed using colony-forming unit (CFU) analysis, viable bacterial DNA abundance, and the rate of escape into antibiotic-free medium, together with measures of autophagic flux. Rifampicin, alone or in combination with vancomycin, caused a rapid decrease in the culturability of intracellular bacteria, concomitant with stable or increased absolute bacterial DNA levels. Both antibiotics significantly inhibited autophagic flux. However, modulation of autophagic flux did not affect viable bacterial DNA levels. In summary, autophagy was shown to be a factor in the host-pathogen relationship in this model, as its modulation affected the growth state of intracellular S. aureus with respect to both their culturability and propensity to escape the intracellular niche. While rifampicin and vancomycin treatments moderately suppressed autophagic flux acutely, this did not explain the paradoxical response of antibiotic treatment in decreasing S. aureus culturability whilst failing to clear bacterial DNA and hence intracellular bacterial load. Thus, off-target effects of rifampicin and vancomycin on autophagic flux in osteocyte-like cells could not explain the persistent S. aureus infection in these cells.


Assuntos
Antibacterianos , Autofagia , Osteócitos , Rifampina , Infecções Estafilocócicas , Staphylococcus aureus , Vancomicina , Autofagia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Osteócitos/efeitos dos fármacos , Osteócitos/microbiologia , Antibacterianos/farmacologia , Humanos , Vancomicina/farmacologia , Rifampina/farmacologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Interações Hospedeiro-Patógeno , DNA Bacteriano/genética
4.
Front Cell Infect Microbiol ; 11: 781022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805001

RESUMO

Infectious osteomyelitis associated with periprosthetic joint infections is often recalcitrant to treatment and has a high rate of recurrence. In the case of Staphylococcus aureus, the most common pathogen in all forms of osteomyelitis, this may be attributed in part to residual intracellular infection of host cells, yet this is not generally considered in the treatment strategy. Osteocytes represent a unique cell type in this context due to their abundance, their formation of a syncytium throughout the bone that could facilitate bacterial spread and their relative inaccessibility to professional immune cells. As such, there is potential value in studying the host-pathogen interactions in the context of this cell type in a replicable and scalable in vitro model. Here, we examined the utility of the human osteosarcoma cell line SaOS2 differentiated to an osteocyte-like stage (SaOS2-OY) as an intracellular infection model for S. aureus. We demonstrate that S. aureus is capable of generating stable intracellular infections in SaOS2-OY cells but not in undifferentiated, osteoblast-like SaOS2 cells (SaOS2-OB). In SaOS2-OY cells, S. aureus transitioned towards a quasi-dormant small colony variant (SCV) growth phenotype over a 15-day post-infection period. The infected cells exhibited changes in the expression of key immunomodulatory mediators that are consistent with the infection response of primary osteocytes. Thus, SaOS2-OY is an appropriate cell line model that may be predictive of the interactions between S. aureus and human osteocytes, and this will be useful for studying mechanisms of persistence and for testing the efficacy of potential antimicrobial strategies.


Assuntos
Osteomielite , Infecções Estafilocócicas , Linhagem Celular , Humanos , Osteócitos , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA