Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(4): 1162-1171, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194722

RESUMO

OBJECTIVE: A unilateral, lightweight powered hip exoskeleton has been shown to improve walking economy in individuals with above-knee amputations. However, the mechanism responsible for this improvement is unknown. In this study we assess the biomechanics of individuals with above-knee amputations walking with and without a unilateral, lightweight powered hip exoskeleton. We hypothesize that assisting the residual limb will reduce the net residual hip energy. METHODS: Eight individuals with above-knee amputations walked on a treadmill at 1 m/s with and without a unilateral powered hip exoskeleton. Flexion/extension assistance was provided to the residual hip. Motion capture and inverse dynamic analysis were performed to assess gait kinematics, kinetics, center of mass, and center of pressure. RESULTS: The net energy at the residual hip decreased from 0.05±0.04 J/kg without the exoskeleton to -0.01±0.05 J/kg with the exoskeleton (p = 0.026). The cumulative positive energy of the residual hip decreased on average by 18.2% with 95% confidence intervals (CI) (0.20 J/kg, 0.24 J/kg) and (0.16 J/kg, 0.20 J/kg) without and with the exoskeleton, respectively. During stance, the hip extension torque of the residual limb decreased on average by 37.5%, 95% CI (0.28 Nm/kg, 0.36 Nm/kg), (0.17 Nm/kg, 0.23 Nm/kg) without and with the exoskeleton, respectively. CONCLUSION: Powered hip exoskeleton assistance significantly reduced the net residual hip energy, with concentric energy being the main contributor to this change. We believe that the reduction in residual hip extension torque during early stance is the main contributor to this reduction. SIGNIFICANCE: This analysis shows that by assisting the residual hip, the exoskeleton significantly decreased the net hip energy produced by the residual limb, which may explain the improvements in walking economy previously observed.


Assuntos
Exoesqueleto Energizado , Humanos , Fenômenos Biomecânicos , Caminhada , Marcha , Amputação Cirúrgica
2.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176078

RESUMO

After a stroke, the weight-bearing asymmetry often forces stroke survivors to compensate with overuse of the unaffected side muscles to stand up. Powered exoskeletons can address this problem by assisting the affected limb during sit-tostand transitions. However, there is currently no experimental evidence demonstrating the efficacy of this intervention with the target population. This study explores controlling a powered knee exoskeleton with EMG signals to assist a stroke patient during sit-to-stand transitions. Our results show decreased peak knee torques by 6.24% and 11.9% on their unaffected and affected sides, respectively, while wearing the exoskeleton. Additionally, the peak value of the EMG signal decreased by 29.3% and 21.9%, and the integrated EMG signal value decreased by 46.7% and 36.1% on their affected vastus medialis and lateralis while wearing the exoskeleton, respectively. Finally, our results indicate improved medial-lateral balance by 61.2%, 81.6%, and 70.0% based on the degree of asymmetry (DOA), the center of pressure (COP), and the center of mass (COM), respectively. These results support the efficacy of using powered exoskeletons for high-torque tasks such as sit-to-stand transitions with stroke survivors.


Assuntos
Exoesqueleto Energizado , Acidente Vascular Cerebral , Humanos , Extremidade Inferior/fisiologia , Movimento/fisiologia , Músculos
3.
Front Neurorobot ; 15: 700823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803646

RESUMO

Robotic exoskeletons can assist humans with walking by providing supplemental torque in proportion to the user's joint torque. Electromyographic (EMG) control algorithms can estimate a user's joint torque directly using real-time EMG recordings from the muscles that generate the torque. However, EMG signals change as a result of supplemental torque from an exoskeleton, resulting in unreliable estimates of the user's joint torque during active exoskeleton assistance. Here, we present an EMG control framework for robotic exoskeletons that provides consistent joint torque predictions across varying levels of assistance. Experiments with three healthy human participants showed that using diverse training data (from different levels of assistance) enables robust torque predictions, and that a convolutional neural network (CNN), but not a Kalman filter (KF), can capture the non-linear transformations in EMG due to exoskeleton assistance. With diverse training, the CNN could reliably predict joint torque from EMG during zero, low, medium, and high levels of exoskeleton assistance [root mean squared error (RMSE) below 0.096 N-m/kg]. In contrast, without diverse training, RMSE of the CNN ranged from 0.106 to 0.144 N-m/kg. RMSE of the KF ranged from 0.137 to 0.182 N-m/kg without diverse training, and did not improve with diverse training. When participant time is limited, training data should emphasize the highest levels of assistance first and utilize at least 35 full gait cycles for the CNN. The results presented here constitute an important step toward adaptive and robust human augmentation via robotic exoskeletons. This work also highlights the non-linear reorganization of locomotor output when using assistive exoskeletons; significant reductions in EMG activity were observed for the soleus and gastrocnemius, and a significant increase in EMG activity was observed for the erector spinae. Control algorithms that can accommodate spatiotemporal changes in muscle activity have broad implications for exoskeleton-based assistance and rehabilitation following neuromuscular injury.

4.
Sci Data ; 7(1): 150, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439980

RESUMO

Motion capture is necessary to quantify gait deviations in individuals with lower-limb amputations. However, access to the patient population and the necessary equipment is limited. Here we present the first open biomechanics dataset for 18 individuals with unilateral above-knee amputations walking at different speeds. Based on their ability to comfortably walk at 0.8 m/s, subjects were divided into two groups, namely K2 and K3. The K2 group walked at [0.4, 0.5, 0.6, 0.7, 0.8] m/s; the K3 group walked at [0.6, 0.8, 1.0, 1.2, 1.4] m/s. Full-body biomechanics was collected using a 10-camera motion capture system and a fully instrumented treadmill. The presented open dataset will enable (i) clinicians to understand the biomechanical demand required to walk with a knee and ankle prosthesis at various speeds, (ii) researchers in biomechanics to gain new insights into the gait deviations of individuals with above-knee amputations, and (iii) engineers to improve prosthesis design and function.


Assuntos
Amputados , Análise da Marcha , Velocidade de Caminhada , Amputação Cirúrgica , Fenômenos Biomecânicos , Humanos , Prótese Articular , Articulação do Joelho , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA