Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
2.
Curr Med Chem ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37448363

RESUMO

Human papillomavirus (HPV) infections are the cause of warts, lesions and cancer, with different types of HPV causing different symptoms. HPV infections are the primary cause of cervical cancer. There are over 220 different types of HPV, and only nine of these can currently be vaccinated. There is a need to treat these viral infections without just treating the symptoms of the infection, as is currently the main method. There is a wide range of small molecules that have been used to inhibit various stages of the HPV infectious cycle. This review examined 132 small molecules from 121 studies that specifically target aspects of HPV infections. HPV DNA encodes for six early genes (E1 to E7, skipping E3) and two late genes (L1 and L2). According to the results, these targets for small molecule inhibitors fall into three categories: those targeting E1 and E2, targeting E6 and E7 and, finally, targeting L1 and L2. Inhibitors of E6 and E7 are the most widely studied targets, with the majority of HPV inhibition in this area. While compounds targeting both E1/E2 and E6/E7 have made it to clinical trials, there has been no significant advancement on the topic.

3.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982277

RESUMO

Mycobacterium tuberculosis (M. tb), the causative agent of TB, is a recalcitrant pathogen that is rife around the world, latently infecting approximately a quarter of the worldwide population. The asymptomatic status of the dormant bacteria escalates to the transmissible, active form when the host's immune system becomes debilitated. The current front-line treatment regimen for drug-sensitive (DS) M. tb strains is a 6-month protocol involving four different drugs that requires stringent adherence to avoid relapse and resistance. Poverty, difficulty to access proper treatment, and lack of patient compliance contributed to the emergence of more sinister drug-resistant (DR) strains, which demand a longer duration of treatment with more toxic and more expensive drugs compared to the first-line regimen. Only three new drugs, bedaquiline (BDQ) and the two nitroimidazole derivatives delamanid (DLM) and pretomanid (PMD) were approved in the last decade for treatment of TB-the first anti-TB drugs with novel mode of actions to be introduced to the market in more than 50 years-reflecting the attrition rates in the development and approval of new anti-TB drugs. Herein, we will discuss the M. tb pathogenesis, current treatment protocols and challenges to the TB control efforts. This review also aims to highlight several small molecules that have recently been identified as promising preclinical and clinical anti-TB drug candidates that inhibit new protein targets in M. tb.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Protocolos Clínicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-33558290

RESUMO

Polyketide synthase 13 (Pks13) is an important enzyme found in Mycobacterium tuberculosis (M. tuberculosis) that condenses two fatty acyl chains to produce α-alkyl ß-ketoesters, which in turn serve as the precursors for the synthesis of mycolic acids that are essential building blocks for maintaining the cell wall integrity of M. tuberculosis Coumestan derivatives have recently been identified in our group as a new chemotype that exert their antitubercular effects via targeting of Pks13. These compounds were active on both drug-susceptible and drug-resistant strains of M. tuberculosis as well as showing low cytotoxicity to healthy cells and a promising selectivity profile. No cross-resistance was found between the coumestan derivatives and first-line TB drugs. Here we report that treatment of M. tuberculosis bacilli with 15 times the MIC of compound 1, an optimized lead coumestan compound, resulted in a colony forming unit (CFU) reduction from 6.0 log10 units to below the limit of detection (1.0 log10 units) per mL culture, demonstrating a bactericidal mechanism of action. Single dose (10 mg/kg) pharmacokinetic studies revealed favorable parameters with a relative bioavailability of 19.4%. In a mouse infection and chemotherapy model, treatment with 1 showed dose-dependent mono-therapeutic activity, whereas treatment with 1 in combination with rifampin showed clear synergistic effects. Together these data suggest that coumestan derivatives are promising agents for further TB drug development.

6.
RSC Med Chem ; 12(11): 1910-1925, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34825187

RESUMO

Paediatric glioblastomas are rapidly growing, devastating brain neoplasms with an invasive phenotype. Radiotherapy and chemotherapy, which are the current therapeutic adjuvant to surgical resection, are still associated with various toxicity profiles and only marginally improve the course of the disease and life expectancy. A considerable body of evidence supports the antitumour and apoptotic effects of certain cannabinoids, such as WIN55,212-2, against a wide spectrum of cancer cells, including gliomas. In fact, we previously highlighted the potent cytotoxic activity of the cannabinoid ligand 5 against glioblastoma KNS42 cells. Taken together, in this study, we designed, synthesised, and evaluated several indoles and indole bioisosteres for their antitumour activities. Compounds 8a, 8c, 8f, 12c, and 24d demonstrated significant inhibitory activities against the viability (IC50 = 2.34-9.06 µM) and proliferation (IC50 = 2.88-9.85 µM) of paediatric glioblastoma KNS42 cells. All five compounds further retained their antitumour activities against two atypical teratoid/rhabdoid tumour (AT/RT) cell lines. When tested against a medulloblastoma DAOY cell line, only 8c, 8f, 12c, and 24d maintained their viability inhibitory activities. The viability assay against non-neoplastic human fibroblast HFF1 cells suggested that compounds 8a, 8c, 8f, and 12c act selectively towards the panel of paediatric brain tumour cells. In contrast, compound 24d and WIN55,212-2 were highly toxic toward HFF1 cells. Due to their structural resemblance to known cannabimimetics, the most potent compounds were tested in cannabinoid 1 and 2 receptor (CB1R and CB2R) functional assays. Compounds 8a, 8c, and 12c failed to activate or antagonise both CB1R and CB2R, whereas compounds 8f and 24d antagonised CB1R and CB2R, respectively. We also performed a transcriptional analysis on KNS42 cells treated with our prototype compound 8a and highlighted a set of seven genes that were significantly downregulated. The expression levels of these genes were previously shown to be positively correlated with tumour growth and progression, indicating their implication in the antitumour activity of 8a. Overall, the drug-like and selective antitumour profiles of indole-2-carboxamides 8a, 8c, 8f, and 12c substantiate the versatility of the indole scaffold in cancer drug discovery.

7.
Eur J Med Chem ; 226: 113861, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624822

RESUMO

Human African Trypanosomiasis (HAT) is a neglected tropical disease caused by the parasitic protozoan Trypanosoma brucei (T. b.), and affects communities in sub-Saharan Africa. Previously, analogues of a tetrahydroisoquinoline scaffold were reported as having in vitro activity (IC50 = 0.25-70.5 µM) against T. b. rhodesiense. In this study the synthesis and antitrypanosomal activity of 80 compounds based around a core tetrahydroisoquinoline scaffold are reported. A detailed structure activity relationship was revealed, and five derivatives (two of which have been previously reported) with inhibition of T. b. rhodesiense growth in the sub-micromolar range were identified. Four of these (3c, 12b, 17b and 26a) were also found to have good selectivity over mammalian cells (SI > 50). Calculated logD values and preliminary ADME studies predict that these compounds are likely to have good absorption and metabolic stability, with the ability to passively permeate the blood brain barrier. This makes them excellent leads for a blood-brain barrier permeable antitrypanosomal scaffold.


Assuntos
Tetra-Hidroisoquinolinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/química , Tripanossomicidas/síntese química , Tripanossomicidas/química
8.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668340

RESUMO

Sigma-1 (σ-1) receptor agonists are considered as potential treatment for stroke. TS-157 is an alkoxyisoxazole-based σ-1 receptor agonist previously discovered in our group. The present study describes TS-157 profile in a battery of tests for cerebral ischemia. Initial evaluation demonstrated the compound's safety profile and blood-brain barrier permeability, as well as its ability to induce neurite outgrowth in vitro. The neurite outgrowth was shown to be mediated via σ-1 receptor agonism and involves upregulation of ERK phosphorylation (pERK). In particular, TS-157 also significantly accelerated the recovery of motor function in rats with transient middle cerebral artery occlusion (tMCAO). Overall, the results herein support the notion that σ-1 receptor agonists are potential therapeutics for stroke and further animal efficacy studies are warranted.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Oxazóis/farmacologia , Receptores sigma/agonistas , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Sigma-1
9.
Chem Biol Drug Des ; 97(6): 1137-1150, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33638304

RESUMO

Several rationally designed isoniazid (INH), pyrazinamide (PZA) and ciprofloxacin (CPF) derivatives were conveniently synthesized and evaluated in vitro against H37Rv Mycobacterium tuberculosis (M. tb) strain. CPF derivative 16 displayed a modest activity (MIC = 16 µg/ml) and was docked into the M. tb DNA gyrase. Isoniazid-pyrazinoic acid (INH-POA) hybrid 21a showed the highest potency in our study (MIC = 2 µg/ml). It also retained its high activity against the other tested M. tb drug-sensitive strain (DS) V4207 (MIC = 4 µg/ml) and demonstrated negligible cytotoxicity against Vero cells (IC50  ≥ 64 µg/ml). Four tested drug-resistant (DR) M. tb strains were refractory to 21a, similar to INH, whilst being sensitive to CPF. Compound 21a was also inactive against two non-tuberculous mycobacterial (NTM) strains, suggesting its selective activity against M. tb. The noteworthy activity of 21a against DS strains and its low cytotoxicity highlight its potential to treat DS M. tb.


Assuntos
Antituberculosos/síntese química , Ciprofloxacina/análogos & derivados , Isoniazida/análogos & derivados , Pirazinamida/análogos & derivados , Animais , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Sítios de Ligação , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Ciprofloxacina/química , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , DNA Girase/química , DNA Girase/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Isoniazida/metabolismo , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Micobactérias não Tuberculosas/efeitos dos fármacos , Pirazinamida/metabolismo , Pirazinamida/farmacologia , Relação Estrutura-Atividade , Células Vero
10.
Eur J Med Chem ; 213: 113202, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516983

RESUMO

We previously reported a series of coumestans-a naturally occurring tetracyclic scaffold containing a δ-lactone-that effectively target the thioesterase domain of polyketide synthase 13 (Pks13) in Mycobacterium tuberculosis (Mtb), resulting in superior anti-tuberculosis (TB) activity. Compared to the corresponding 'open-form' ethyl benzofuran-3-carboxylates, the enhanced anti-TB effects seen with the conformationally restricted coumestan series could be attributed to the extra π-π stacking interactions between the benzene ring of coumestans and the phenyl ring of F1670 residue located in the Pks13-TE binding domain. To further probe this binding feature, novel tetracyclic analogues were synthesized and evaluated for their anti-TB activity against the Mtb strain H37Rv. Initial comparison of the 'open-form' analogueues against the tetracyclic counterparts again showed that the latter is superior in terms of anti-TB activity. In particular, the δ-lactam-containing 5H-benzofuro [3,2-c]quinolin-6-ones gave the most promising results. Compound 65 demonstrated potent activity against Mtb H37Rv with MIC value between 0.0313 and 0.0625 µg/mL, with high selectivity to Vero cells (64-128 fold). The thermal stability analysis supports the notion that the tetracyclic compounds bind to the Pks13-TE domain as measured by nano DSF, consistent with the observed SAR trends. Compound 65 also showed excellent selectivity against actinobacteria and therefore unlikely to develop potential drug resistance to nonpathogenic bacteria.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Policetídeo Sintases/antagonistas & inibidores , Quinolonas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Policetídeo Sintases/metabolismo , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade
11.
RSC Adv ; 11(26): 15497-15511, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35481189

RESUMO

The omnipresent threat of tuberculosis (TB) and the scant treatment options thereof necessitate the development of new antitubercular agents, preferably working via a novel mechanism of action distinct from the current drugs. Various studies identified the mycobacterial membrane protein large 3 transporter (MmpL3) as the target of several classes of compounds, including the indole-2-caboxamides. Herein, several indoleamide analogues were rationally designed, synthesised, and evaluated for their antitubercular and antitumour activities. Compound 8g displayed the highest activity (MIC = 0.32 µM) against the drug-sensitive (DS) Mycobacterium tuberculosis (M. tb) H37Rv strain. This compound also exhibited high selective activity towards M. tb over mammalian cells [IC50 (Vero cells) = 40.9 µM, SI = 128], suggesting its minimal cytotoxicity. In addition, when docked into the MmpL3 active site, 8g adopted a binding profile similar to the indoleamide ligand ICA38. A related compound 8f showed dual antitubercular (MIC = 0.62 µM) and cytotoxic activities against paediatric glioblastoma multiforme (GBM) cell line KNS42 [IC50 (viability) = 0.84 µM]. Compound 8f also showed poor cytotoxic activity against healthy Vero cells (IC50 = 39.9 µM). Compounds 9a and 15, which were inactive against M. tb, showed potent cytotoxic (IC50 = 8.25 and 5.04 µM, respectively) and antiproliferative activities (IC50 = 9.85 and 6.62 µM, respectively) against KNS42 cells. Transcriptional analysis of KNS42 cells treated with compound 15 revealed a significant downregulation in the expression of the carbonic anhydrase 9 (CA9) and the spleen tyrosine kinase (SYK) genes. The expression levels of these genes in GBM tumours were previously shown to contribute to tumour progression, suggesting their involvement in our observed antitumour activities. Compounds 9a and 15 were selected for further evaluations against three different paediatric brain tumour cell lines (BT12, BT16 and DAOY) and non-neoplastic human fibroblast cells HFF1. Compound 9a showed remarkable cytotoxic (IC50 = 0.89 and 1.81 µM, respectively) and antiproliferative activities (IC50 = 7.44 and 6.06 µM, respectively) against the two tested atypical teratoid/rhabdoid tumour (AT/RT) cells BT12 and BT16. Interestingly, compound 9a was not cytotoxic when tested against non-neoplastic HFF1 cells [IC50 (viability) = 119 µM]. This suggests that an indoleamide scaffold can be fine-tuned to confer a set of derivatives with selective antitubercular and/or antitumour activities.

12.
ChemMedChem ; 16(3): 524-536, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32964625

RESUMO

Since its initial discovery as the basis for nicotinic acetylcholine receptor ligands, the 3-alkoxyisoxazole scaffold has been shown to be a versatile platform for the development of potent σ1 and σ2 receptor ligands. Herein we report a further SAR exploration of the 3-alkoxyisoxazole scaffold with the aim of obtaining potent σ2 receptor ligands. Various substitutions on the benzene ring and at the basic amino regions resulted in a total of 21 compounds that were tested for their binding affinities for the σ2 receptor. In particular, compound 51 [(2S)-1-(4-ammoniobutyl)-2-(((5-((3,4-dichlorophenoxy)methyl)isoxazol-3-yl)oxy)methyl)pyrrolidin-1-ium chloride] was identified as one of the most potent σ2 ligands within the series, with a Ki value of 7.9 nM. It demonstrated potent antiproliferative effects on both osteosarcoma cell lines 143B and MOS-J (IC50 values of 0.89 and 0.71 µM, respectively), relative to siramesine (IC50 values of 1.81 and 2.01 µM). Moreover, compound 51 inhibited clonal formation of osteosarcoma 143B cells at 1 µM, corresponding to half the dose required of siramesine for similar effects. The general cytotoxicity profile of compound 51 was assessed in a number of normal cell lines, including HaCaT, HAF, and LO2 cells. Furthermore, FACS analysis showed that compound 51 likely inhibits osteosarcoma cell growth by disruption of the cell cycle and promotion of apoptosis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Isoxazóis/farmacologia , Osteossarcoma/tratamento farmacológico , Receptores sigma/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Ligantes , Estrutura Molecular , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Receptores sigma/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Bioorg Chem ; 106: 104486, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276981

RESUMO

The treacherous nature of tuberculosis (TB) combined with the ubiquitous presence of the drug-resistant (DR) forms pose this disease as a growing public health menace. Therefore, it is imperative to develop new chemotherapeutic agents with a novel mechanism of action to circumvent the cross-resistance problems. The unique architecture of the Mycobacterium tuberculosis (M. tb) outer envelope plays a predominant role in its pathogenesis, contributing to its intrinsic resistance against available therapeutic agents. The mycobacterial membrane protein large 3 (MmpL3), which is a key player in forging the M. tb rigid cell wall, represents an emerging target for TB drug development. Several indole-2-carboxamides were previously identified in our group as potent anti-TB agents that act as inhibitor of MmpL3 transporter protein. Despite their highly potent in vitro activities, the lingering Achilles heel of these indoleamides can be ascribed to their high lipophilicity as well as low water solubility. In this study, we report our attempt to improve the aqueous solubility of these indole-2-carboxamides while maintaining an adequate lipophilicity to allow effective M. tb cell wall penetration. A more polar adamantanol moiety was incorporated into the framework of several indole-2-carboxamides, whereupon the corresponding analogues were tested for their anti-TB activity against drug-sensitive (DS) M. tb H37Rv strain. Three adamantanol derivatives 8i, 8j and 8l showed nearly 2- and 4-fold higher activity (MIC = 1.32 - 2.89 µM) than ethambutol (MIC = 4.89 µM). Remarkably, the most potent adamantanol analogue 8j demonstrated high selectivity towards DS and DR M. tb strains over mammalian cells [IC50 (Vero cells) ≥ 169 µM], evincing its lack of cytotoxicity. The top eight active compounds 8b, 8d, 8f, 8i, 8j, 8k, 8l and 10a retained their in vitro potency against DR M. tb strains and were docked into the MmpL3 active site. The most potent adamantanol/adamantane-based indoleamides 8j/8k displayed a two-fold surge in potency against extensively DR (XDR) M. tb strains with MIC values of 0.66 and 0.012 µM, respectively. The adamantanol-containing indole-2-carboxamides exhibited improved water solubility both in silico and experimentally, relative to the adamantane counterparts. Overall, the observed antimycobacterial and physicochemical profiles support the notion that adamantanol moiety is a suitable replacement to the adamantane scaffold within the series of indole-2-carboxamide-based MmpL3 inhibitors.


Assuntos
Adamantano/farmacologia , Antituberculosos/farmacologia , Desenho de Fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adamantano/análogos & derivados , Adamantano/química , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
14.
RSC Adv ; 10(13): 7523-7540, 2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33014349

RESUMO

Our group has previously reported several indolecarboxamides exhibiting potent antitubercular activity. Herein, we rationally designed several arylcarboxamides based on our previously reported homology model and the recently published crystal structure of the mycobacterial membrane protein large 3 (MmpL3). Many analogues showed considerable anti-TB activity against drug-sensitive (DS) Mycobacterium tuberculosis (M. tb) strain. Naphthamide derivatives 13c and 13d were the most active compounds in our study (MIC: 6.55, 7.11 µM, respectively), showing comparable potency to the first line anti-tuberculosis (anti-TB) drug ethambutol (MIC: 4.89 µM). In addition to the naphthamide derivatives, we also identified the quinolone-2-carboxamides and 4-arylthiazole-2-carboxamides as potential MmpL3 inhibitors in which compounds 8i and 18b had MIC values of 9.97 and 9.82 µM, respectively. All four compounds retained their high activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tb strains. It is worth noting that the two most active compounds 13c and 13d also exhibited the highest selective activity towards DS, MDR and XDR M. tb strains over mammalian cells [IC50 (Vero cells) ≥ 227 µM], indicating their potential lack of cytotoxicity. The four compounds were docked into the MmpL3 active site and were studied for their drug-likeness using Lipinski's rule of five.

15.
Cancers (Basel) ; 11(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766284

RESUMO

Ovarian cancers remain one of the most common causes of gynecologic cancer-related death in women worldwide. The standard treatment comprises platinum-based chemotherapy, and most tumors develop resistance to therapeutic drugs. One mechanism of developing drug resistance is alterations of molecules involved in apoptosis, ultimately assisting in the cells' capability to evade death. Thus, there is a need to focus on identifying potential drugs that restore apoptosis in cancer cells. Here, we discuss the major inducers of apoptosis mediated through various mechanisms and their usefulness as potential future treatment options for ovarian cancer. Broadly, they can target the apoptotic pathways directly or affect apoptosis indirectly through major cancer-pathways in cells. The direct apoptotic targets include the Bcl-2 family of proteins and the inhibitor of apoptotic proteins (IAPs). However, indirect targets include processes related to homologous recombination DNA repair, micro-RNA, and p53 mutation. Besides, apoptosis inducers may also disturb major pathways converging into apoptotic signals including janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), wingless-related integration site (Wnt)/ß-Catenin, mesenchymal-epithelial transition factor (MET)/hepatocyte growth factor (HGF), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)/v-AKT murine thymoma viral oncogene homologue (AKT)/mammalian target of rapamycin (mTOR) pathways. Several drugs in our review are undergoing clinical trials, for example, birinapant, DEBIO-1143, Alisertib, and other small molecules are in preclinical investigations showing promising results in combination with chemotherapy. Molecules that exhibit better efficacy in the treatment of chemo-resistant cancer cells are of interest but require more extensive preclinical and clinical evaluation.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31427291

RESUMO

The suboptimal effectiveness of ß-lactam antibiotics against Mycobacterium tuberculosis has hindered the utility of this compound class for tuberculosis treatment. However, the results of treatment with a second-line regimen containing meropenem plus a ß-lactamase inhibitor were found to be encouraging in a case study of extensively drug-resistant tuberculosis (M. C. Payen, S. De Wit, C. Martin, R. Sergysels, et al., Int J Tuberc Lung Dis 16:558-560, 2012, https://doi.org/10.5588/ijtld.11.0414). We hypothesized that the innate resistance of M. tuberculosis to ß-lactams is mediated in part by noncanonical accessory proteins that are not considered the classic targets of ß-lactams and that small-molecule inhibitors of those accessory targets might sensitize M. tuberculosis to ß-lactams. In this study, we screened an NIH small-molecule library for the ability to sensitize M. tuberculosis to meropenem. We identified six hit compounds, belonging to either the N-arylindole or benzothiophene chemotype. Verification studies confirmed the synthetic lethality phenotype for three of the N-arylindoles and one benzothiophene derivative. The latter was demonstrated to be partially bioavailable via oral administration in mice. Structure-activity relationship studies of both structural classes identified analogs with potent antitubercular activity, alone or in combination with meropenem. Transcriptional profiling revealed that oxidoreductases, MmpL family proteins, and a 27-kDa benzoquinone methyltransferase could be the targets of the N-arylindole potentiator. In conclusion, our compound-compound synthetic lethality screening revealed novel small molecules that were capable of potentiating the action of meropenem, presumably via inhibition of the innate resistance conferred by ß-lactam accessory proteins. ß-Lactam compound-compound synthetic lethality may be an alternative approach for drug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mutações Sintéticas Letais/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , beta-Lactamas/farmacologia , Animais , Antibacterianos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/metabolismo , Feminino , Meropeném/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
17.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035676

RESUMO

Polo-like kinase 4 (PLK4) is a cell cycle-regulated protein kinase (PK) recruited at the centrosome in dividing cells. Its overexpression triggers centrosome amplification, which is associated with genetic instability and carcinogenesis. In previous work, we established that PLK4 is overexpressed in pediatric embryonal brain tumors (EBT). We also demonstrated that PLK4 inhibition exerted a cytostatic effect in EBT cells. Here, we examined an array of PK inhibitors (CFI-400945, CFI-400437, centrinone, centrinone-B, R-1530, axitinib, KW-2449, and alisertib) for their potential crossover to PLK4 by comparative structural docking and activity inhibition in multiple established embryonal tumor cell lines (MON, BT-12, BT-16, DAOY, D283). Our analyses demonstrated that: (1) CFI-400437 had the greatest impact overall, but similar to CFI-400945, it is not optimal for brain exposure. Also, their phenotypic anti-cancer impact may, in part, be a consequence of the inhibition of Aurora kinases (AURKs). (2) Centrinone and centrinone B are the most selective PLK4 inhibitors but they are the least likely to penetrate the brain. (3) KW-2449, R-1530 and axitinib are the ones predicted to have moderate-to-good brain penetration. In conclusion, a new selective PLK4 inhibitor with favorable physiochemical properties for optimal brain exposure can be beneficial for the treatment of EBT.


Assuntos
Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Med Chem ; 62(7): 3575-3589, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30875203

RESUMO

Our group recently reported the identification of novel coumestan derivatives as Mycobacterium tuberculosis ( Mtb) Pks13-thioesterase (TE) domain inhibitors, with mutations observed (D1644G and N1640K) in the generated coumestan-resistant Mtb colonies. Herein, we report a further structure-activity relationships exploration exploiting the available Pks13-TE X-ray co-crystal structure that resulted in the discovery of extremely potent coumestan analogues 48 and 50. These molecules possess excellent anti-tuberculosis activity against both the drug-susceptible (MIC = 0.0039 µg/mL) and drug-resistant Mtb strains (MIC = 0.0078 µg/mL). Moreover, the excellent in vitro activity is translated to the in vivo mouse serum inhibitory titration assay, with administration of coumestan 48 at 100 mg/kg showing an 8-fold higher activity than that of isoniazid or TAM16 given at 10 or 100 mg/kg, respectively. Preliminary ADME-Tox data for the coumestans were promising and, coupled with the practicality of synthesis, warrant further in vivo efficacy assessments of the coumestan derivatives.


Assuntos
Antituberculosos/farmacologia , Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Policetídeo Sintases/antagonistas & inibidores , Animais , Antituberculosos/química , Chlorocebus aethiops , Cumarínicos/química , Cristalografia por Raios X , Farmacorresistência Bacteriana , Inibidores Enzimáticos/química , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Células Vero
19.
Medchemcomm ; 10(12): 2131-2139, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32904145

RESUMO

Previously we identified a series of amidoalkylindoles as potent and selective CB2 partial agonists. In the present study, we report our continuous effort to improve the aqueous solubility by introducing N atoms to the amidoalkylindole framework. Synthesis, characterization, and pharmacology evaluations were described. Bioisosteric replacements of the indole nucleus with an indazole, azaindole and benzimidazole were explored. Benzimidazole 43 (EC50,CB1 = NA, EC50,CB2 = 0.067 µM) and azaindole 24 (EC50,CB1 = NA, EC50,CB2 = 0.048 µM) were found to be potent and selective CB2 receptor partial agonists, both with improved aqueous solubility.

20.
Curr Mol Pharmacol ; 12(1): 27-49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30360731

RESUMO

BACKGROUND: Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-ß-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human's, there have been some early drug discovery efforts towards developing potent and selective inhibitors. OBJECTIVE: Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors. CONCLUSION: Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/metabolismo , Ácidos Micólicos/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA