Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cell Cycle ; 6(22): 2835-9, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17986862

RESUMO

A novel method to improve targeting and presentation of poorly immunogenic tumor-related antigens was investigated. This was performed with a molecular adjuvant constructed by covalently linking a response selective peptide agonist of C5a (YSFKDMP(MeL)aR) to known melanoma tumor-related antigens. C57Bl/6J mice were injected subcutaneously with bone marrow derived dendritic cells (DCs) pulsed with a melanoma epitope (TRP2-P2/Agonist), melanoma epitope tyrosinase (TYR/Agonist), a nonfunctional reverse conformation C5a agonist bound to TYR(reverse peptide) or DMSO-PBS vehicle. Mice were injected with the pulsed DCs and cytokines IL-2 and GMCSF three times prior to subcutaneous challenge with B16-F10 melanoma cells. All groups subsequently received DC vaccine boosters twice per week. Tumor growth was reduced and survival enhanced in mice immunized with the combination of TRP2-P2/Agonist and TYR/Agonist compared to mice receiving reverse peptide or vehicle.


Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Complemento C5a/agonistas , Células Dendríticas/metabolismo , Células Dendríticas/transplante , Modelos Animais de Doenças , Melanoma Experimental/prevenção & controle , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/administração & dosagem , Complemento C5a/genética , Complemento C5a/uso terapêutico , Células Dendríticas/imunologia , Inibidores do Crescimento/administração & dosagem , Inibidores do Crescimento/metabolismo , Inibidores do Crescimento/uso terapêutico , Humanos , Interleucina-2/metabolismo , Oxirredutases Intramoleculares/administração & dosagem , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/uso terapêutico , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL
3.
Steroids ; 70(1): 29-35, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15610894

RESUMO

A variety of evidence has been obtained that estrogens are weak tumor initiators. A major step in the multi-stage process leading to tumor initiation involves metabolic formation of 4-catechol estrogens from estradiol (E2) and/or estrone and further oxidation of the catechol estrogens to the corresponding catechol estrogen quinones. The electrophilic catechol quinones react with DNA mostly at the N-3 of adenine (Ade) and N-7 of guanine (Gua) by 1,4-Michael addition to form depurinating adducts. The N3Ade adducts depurinate instantaneously, whereas the N7Gua adducts depurinate with a half-life of several hours. Only the apurinic sites generated in the DNA by the rapidly depurinating N3Ade adducts appear to produce mutations by error-prone repair. Analogously to the catechol estrogen-3,4-quinones, the synthetic nonsteroidal estrogen hexestrol-3',4'-quinone (HES-3',4'-Q) reacts with DNA at the N-3 of Ade and N-7 of Gua to form depurinating adducts. We report here an additional similarity between the natural estrogen E2 and the synthetic estrogen HES, namely, the slow loss of deoxyribose from the N7deoxyguanosine (N7dG) adducts formed by reaction of E2-3,4-Q or HES-3',4'-Q with dG. The half-life of the loss of deoxyribose from the N7dG adducts to form the corresponding 4-OHE2-1-N7Gua and 3'-OH-HES-6'-N7Gua is 6 or 8 h, respectively. The slow cleavage of this glycosyl bond in DNA seems to limit the ability of these adducts to induce mutations.


Assuntos
Desoxiguanosina/química , Desoxirribose/metabolismo , Estradiol/análogos & derivados , Estradiol/toxicidade , Mutagênicos/toxicidade , Cromatografia Líquida de Alta Pressão , Estradiol/química , Espectrometria de Massas , Espectrofotometria Ultravioleta
4.
Steroids ; 70(1): 37-45, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15610895

RESUMO

The nonsteroidal synthetic estrogen hexestrol (HES), which is diethylstilbestrol hydrogenated at the C-3-C-4 double bond, is carcinogenic. Its major metabolite is the catechol, 3'-OH-HES, which can be metabolically converted to the catechol quinone, HES-3',4'-Q. Study of HES was undertaken with the scope to substantiate evidence that natural catechol estrogen-3,4-quinones are endogenous carcinogenic metabolites. HES-3',4'-Q was previously shown to react with deoxyguanosine to form the depurinating adduct 3'-OH-HES-6'-N7Gua by 1,4-Michael addition [Jan S-T, Devanesan PD, Stack DE, Ramanathan R, Byun J, Gross ML, et al. Metabolic activation and formation of DNAadducts of hexestrol,a synthetic nonsteroidal carcinogenic estrogen. Chem Res Toxicol 1998;11:412-9.]. We report here formation of the depurinating adduct 3'-OH-HES-6'-N3Ade by reaction of HES-3',4'-Q with Ade by 1,4-Michael addition. The structure of the N3Ade adduct was established by NMR and MS. We also report here formation of the depurinating 3'-OH-HES-6'-N7Gua and 3'-OH-HES-6'-N3Ade adducts by reaction of HES-3',4'-Q with DNA or by activation of 3'-OH-HES by tyrosinase, lactoperoxidase, prostaglandin H synthase or 3-methylcholanthrene-induced rat liver microsomes in the presence of DNA. The N3Ade adduct was released instantaneously from DNA, whereas the N7Gua adduct was released with a half-life of approximately 3 h. Much lower (<1%) levels of unidentified stable adducts were detected in the DNA from these reactions. These results are similar to those obtained by reaction of endogenous catechol estrogen-3,4-quinones with DNA. The similarities extend to the instantaneously-depurinating N3Ade adducts and relatively slowly-depurinating N7Gua adducts. The endogenous estrogens, estrone and estradiol, their 4-catechol estrogens and HES are carcinogenic in the kidney of Syrian golden hamsters. These results suggest that estrone (estradiol)-3,4-quinones and HES-3',4'-Q are the ultimate carcinogenic metabolites of the natural and synthetic estrogens, respectively. Reaction of the electrophilic quinones by 1,4-Michael addition with DNA at the nucleophilic N-3 of Ade and N-7 of Gua is suggested to be the major critical step in tumor initiation by these compounds.


Assuntos
Carcinógenos/toxicidade , DNA/química , Estradiol/análogos & derivados , Estradiol/química , Estrogênios/toxicidade , Guanina/química , Hexestrol/análogos & derivados , Hexestrol/toxicidade , Carcinógenos/química , Estrogênios/química , Hexestrol/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas de Bombardeamento Rápido de Átomos , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA