RESUMO
This post hoc analysis of the randomized, placebo-controlled N-MOmentum study (NCT02200770) of inebilizumab in neuromyelitis optica spectrum disorder (NMOSD) evaluated relationships between circulating B-cell subsets and aquaporin-4 immunoglobulin G (AQP4-lgG) titers and attacks. Among participants receiving placebo, CD20+ and CD27+ B-cell counts were modestly increased from the pre-attack visit to attack; plasmablast/plasma cell gene signature was increased from baseline to the pre-attack visit (p = 0.016) and from baseline to attack (p = 0.009). With inebilizumab treatment, B-cell subset counts decreased and did not increase with attacks. No difference in change of AQP4-IgG titers from baseline to time of attack was observed.
Assuntos
Aquaporina 4 , Autoanticorpos , Linfócitos B , Neuromielite Óptica , Humanos , Neuromielite Óptica/imunologia , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/sangue , Aquaporina 4/imunologia , Adulto , Feminino , Pessoa de Meia-Idade , Masculino , Autoanticorpos/sangue , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Imunoglobulina G/sangue , Subpopulações de Linfócitos B/imunologiaRESUMO
Aberrant or dysfunctional cellular enzymes are responsible for a wide range of diseases including cancer, neurodegenerative conditions, and metabolic disorders. Deficiencies in enzyme level or biofunction may lead to intracellular accumulation of substrate to toxic levels and interfere with overall cellular function, ultimately leading to cell damage, disease, and death. Marketed therapeutic interventions for inherited monogenic enzyme deficiency disorders include enzyme replacement therapy and small molecule chaperones. Novel approaches of in vivo gene therapy and ex vivo cell therapy are under clinical evaluation and provide promising opportunities to expand the number of available disease-modifying treatments. To support the development of these different therapeutics, assays to quantify the functional activity of protein enzymes have gained importance in the diagnosis of disease, assessment of pharmacokinetics and pharmacodynamic response, and evaluation of drug efficacy. In this review, we discuss the technical aspects of enzyme activity assays in the bioanalytical context, including assay design and format as well as the unique challenges and considerations associated with assay development, validation, and life cycle management.
Assuntos
Biomarcadores , Desenvolvimento de Medicamentos , Erros Inatos do Metabolismo , Humanos , Biomarcadores/metabolismo , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Desenvolvimento de Medicamentos/métodos , Ensaios Enzimáticos/métodos , Animais , Terapia de Reposição de Enzimas/métodosRESUMO
Immunogenicity testing and characterization is an important part of understanding the immune response to administration of a protein therapeutic. Neutralizing antibody (NAb) assays are used to characterize a positive anti-drug antibody (ADA) response. Harmonization of reporting of NAb assay performance and results enables efficient communication and expedient review by industry and health authorities. Herein, a cross-industry group of NAb assay experts have harmonized NAb assay reporting recommendations and provided a bioanalytical report (BAR) submission editable template developed to facilitate agency filings. This document addresses key bioanalytical reporting gaps and provides a report structure for documenting clinical NAb assay performance and results. This publication focuses on the content and presentation of the NAb sample analysis report including essential elements such as the method, critical reagents and equipment, data analysis, study samples, and results. The interpretation of immunogenicity data, including the evaluation of the impact of NAb on safety, exposure, and efficacy, is out of scope of this publication.
Assuntos
Anticorpos Neutralizantes , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , HumanosRESUMO
OBJECTIVES: To evaluate the safety, efficacy and response duration of four different dosing regimens of dazodalibep (DAZ), a non-antibody biological antagonist of CD40L, in patients with rheumatoid arthritis (RA). METHODS: This double-blind study included adult patients with moderate-to-severe active RA with a positive test for serum rheumatoid factor and/or anticitrullinated protein antibodies, an inadequate response to methotrexate, other conventional disease-modifying antirheumatic drugs or tumour necrosis factor-α inhibitors, and no prior treatment with B-cell depleting agents. Eligible participants were randomised equally to five groups receiving intravenous infusions of DAZ or placebo. The primary endpoint was the change from baseline in the Disease Activity Score-28 with C reactive protein (DAS28-CRP) at day 113. Participants were followed through day 309. RESULTS: The study randomised 78 eligible participants. The change from baseline in DAS28-CRP (least squares means±SE) at day 113 was significantly greater for all DAZ groups (-1.83±0.28 to -1.90±0.27; p<0.05) relative to PBO (-1.06±0.26); significant reductions in DAS28-CRP were also observed for all DAZ groups at day 309. The distribution of adverse events was generally balanced among DAZ and PBO groups (74% and 63%, respectively). There were four serious adverse events deemed by investigators to be unrelated to study medication. CONCLUSIONS: DAZ treatment for all dosage regimens significantly reduced DAS28-CRP at day 113 relative to PBO. The safety data suggest an acceptable safety and tolerability profile. Treatment effects at day 113 and the prolonged duration of responses after DAZ cessation support the use of longer dosing intervals. TRIAL REGISTRATION NUMBER: NCT04163991.
Assuntos
Artrite Reumatoide , Fatores Imunológicos , Adulto , Humanos , Antirreumáticos , Artrite Reumatoide/tratamento farmacológico , Método Duplo-Cego , Fatores Imunológicos/efeitos adversos , Metotrexato , Fator ReumatoideRESUMO
OBJECTIVE: To investigate relationships between serum neurofilament light chain (sNfL), ubiquitin C-terminal hydrolase L1 (sUCHL1), tau (sTau) and glial fibrillary acidic protein (sGFAP) levels and disease activity/disability in neuromyelitis optica spectrum disorder (NMOSD), and the effects of inebilizumab on these biomarkers in N-MOmentum. METHODS: N-MOmentum randomised participants to receive inebilizumab or placebo with a randomised controlled period (RCP) of 28 weeks and an open-label follow-up period of ≥2 years. The sNfL, sUCHL1, sTau and sGFAP were measured using single-molecule arrays in 1260 scheduled and attack-related samples from N-MOmentum participants (immunoglobulin G (IgG) autoantibodies to aquaporin-4-positive, myelin oligodendrocyte glycoprotein-IgG-positive or double autoantibody-negative) and two control groups (healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS: The concentration of all four biomarkers increased during NMOSD attacks. At attack, sNfL had the strongest correlation with disability worsening during attacks (Spearman R2=0.40; p=0.01) and prediction of disability worsening after attacks (sNfL cut-off 32 pg/mL; area under the curve 0.71 (95% CI 0.51 to 0.89); p=0.02), but only sGFAP predicted upcoming attacks. At RCP end, fewer inebilizumab-treated than placebo-treated participants had sNfL>16 pg/mL (22% vs 45%; OR 0.36 (95% CI 0.17 to 0.76); p=0.004). CONCLUSIONS: Compared with sGFAP, sTau and sUCHL1, sNfL at attack was the strongest predictor of disability worsening at attack and follow-up, suggesting a role for identifying participants with NMOSD at risk of limited post-relapse recovery. Treatment with inebilizumab was associated with lower levels of sGFAP and sNfL than placebo. TRIAL REGISTRATION NUMBER: NCT02200770.
Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/sangue , Neuromielite Óptica/tratamento farmacológico , Biomarcadores , Anticorpos Monoclonais Humanizados/uso terapêutico , Método Duplo-CegoRESUMO
BACKGROUND: Inebilizumab is an anti-CD19 antibody approved for the treatment of neuromyelitis optica spectrum disorder (NMOSD) in adults with aquaporin-4 autoantibodies. The relationship between B-cell, plasma-cell (PC), and immunoglobulin depletion with longitudinal reductions in NMOSD activity after inebilizumab treatment was characterised post hoc in an exploratory analysis from the N-MOmentum study (NCT02200770). METHODS: Peripheral blood CD20+ B cells, PC gene signature, and immunoglobulin levels were assessed throughout N-MOmentum (follow-up ≥2.5 years); correlations with clinical metrics and magnetic resonance imaging (MRI) lesion activity were assessed. FINDINGS: Inebilizumab induced durable B-cell and PC depletion within 1 week versus placebo. Although no association was observed between B-cell counts at time of attack and NMOSD activity, depth of B-cell depletion after the first dosing period correlated with clinical outcomes. All participants receiving inebilizumab demonstrated a robust long-term therapeutic response, and participants with ≤4 cells/µL after the first 6-month dosing interval had persistently deeper B-cell depletion, lower annualised attack rates (estimated rate [95% CI]: 0.034 [0.024-0.04] vs 0.086 [0.056-0.12]; p = 0.045), fewer new/enlarging T2 MRI lesions (0.49 [0.43-0.56] vs 1.36 [1.12-1.61]; p < 0.0001), and a trend towards decreased Expanded Disability Status Scale worsening (0.076 [0.06-0.10] vs 0.14 [0.10-0.18]; p = 0.093). Antibodies to inebilizumab, although present in a proportion of treated participants, did not alter outcomes. INTERPRETATION: This analysis suggests that compared with placebo, inebilizumab can provide specific, rapid, and durable depletion of B cells in participants with NMOSD. Although deep and persistent CD20+ B-cell depletion correlates with long-term clinical stability, early, deep B-cell depletion correlates with improved disease activity metrics in the first 2 years. FUNDING: Horizon Therapeutics (formerly from Viela Bio/MedImmune).
Assuntos
Neuromielite Óptica , Adulto , Humanos , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/patologia , Linfócitos B , Método Duplo-Cego , Antígenos CD19 , Imageamento por Ressonância Magnética , AutoanticorposRESUMO
A clear scientific and operational need exists for harmonized bioanalytical immunogenicity study reporting to facilitate communication of immunogenicity findings and expedient review by industry and health authorities. To address these key bioanalytical reporting gaps and provide a report structure for documenting immunogenicity results, this cross-industry group was formed to establish harmonized recommendations and a develop a submission template to facilitate agency filings. Provided here are recommendations for reporting clinical anti-drug antibody (ADA) assay results using ligand-binding assay technologies. This publication describes the essential bioanalytical report (BAR) elements such as the method, critical reagents and equipment, study samples, results, and data analysis, and provides a template for a suggested structure for the ADA BAR. This publication focuses on the content and presentation of the bioanalytical ADA sample analysis report. The interpretation of immunogenicity data, including the evaluation of the impact of ADA on safety, exposure, and efficacy, is out of scope of this publication.
Assuntos
Anticorpos , Anticorpos NeutralizantesRESUMO
Plasmacytoid dendritic cells (pDCs) not only are specialized in their capacity to secrete large amounts of type I interferon (IFN) but also serve to enable both innate and adaptive immune responses through expression of additional proinflammatory cytokines, chemokines, and costimulatory molecules. Persistent activation of pDCs has been demonstrated in a number of autoimmune diseases. To evaluate the potential benefit of depleting pDCs in autoimmunity, a monoclonal antibody targeting the pDC-specific marker immunoglobulin-like transcript 7 was generated. This antibody, known as VIB7734, which was engineered for enhanced effector function, mediated rapid and potent depletion of pDCs through antibody-dependent cellular cytotoxicity. In cynomolgus monkeys, treatment with VIB7734 reduced pDCs in blood below the lower limit of normal by day 1 after the first dose. In two phase 1 studies in patients with autoimmune diseases, VIB7734 demonstrated an acceptable safety profile, comparable to that of placebo. In individuals with cutaneous lupus, VIB7734 profoundly reduced both circulating and tissue-resident pDCs, with a 97.6% median reduction in skin pDCs at study day 85 in VIB7734-treated participants. Reductions in pDCs in the skin correlated with a decrease in local type I IFN activity as well as improvements in clinical disease activity. Biomarker analysis suggests that responsiveness to pDC depletion therapy may be greater among individuals with high baseline type I IFN activity, supporting a central role for pDCs in type I IFN production in autoimmunity and further development of VIB7734 in IFN-associated diseases.
Assuntos
Interferon Tipo I , Lúpus Eritematoso Cutâneo , Autoimunidade , Quimiocinas , Células Dendríticas , HumanosRESUMO
BACKGROUND AND PURPOSE: Inhibition of the T- and B-cell interaction through the CD40/CD40 ligand (L) axis is a favourable approach for inflammatory disease treatment. Clinical studies of anti-CD40L molecules in autoimmune diseases have met challenges because of thromboembolic events and adverse haemostasis. VIB4920 (formerly MEDI4920) is a novel CD40L antagonist and Tn3 fusion protein designed to prevent adverse haemostasis and immunopharmacology. We evaluated the pharmacokinetics, activity and toxicity of VIB4920 in monkeys. EXPERIMENTAL APPROACH: Cynomolgus monkeys received i.v. or s.c. 5-300 mg·kg-1 VIB4920 or vehicle, once weekly for 1 month (Studies 1 and 2) or 28 weeks (Study 3). VIB4920 exposure and bioavailability were determined using pharmacokinetic analyses, and immune cell population changes via flow cytometry. Pharmacological activity was evaluated by measuring the animals' capacity to elicit an immune response to keyhole limpet haemocyanin (KLH) and tetanus toxoid (TT). KEY RESULTS: VIB4920 demonstrated linear pharmacokinetics at multiple doses. Lymphocyte, monocyte, cytotoxic T-cell and NK cell counts were not significantly different between treatment groups. B-cell counts reduced dose-dependently and the T-cell dependent antibody response to KLH was suppressed by VIB4920 dose-dependently. The recall response to TT was similar across treatment groups. No thromboembolic events or symptoms of immune system dysfunctionality were observed. CONCLUSIONS AND IMPLICATIONS: VIB4920 demonstrated an acceptable safety profile in monkeys. VIB4920 showed favourable pharmacokinetics, dose-dependent inhibition of a neoantigen-specific immune response and no adverse effects on immune function following long-term use. Our data support the use of VIB4920 in clinical trials.
Assuntos
Doenças Autoimunes , Ligante de CD40 , Animais , Linfócitos B , Macaca fascicularisRESUMO
The CD40/CD40L axis plays a central role in the generation of humoral immune responses and is an attractive target for treating autoimmune diseases in the clinic. Here, we report the generation and clinical results of a CD40L binding protein, VIB4920, which lacks an Fc domain, therefore avoiding platelet-related safety issues observed with earlier monoclonal antibody therapeutics that targeted CD40L. VIB4920 blocked downstream CD40 signaling events, resulting in inhibition of human B cell activation and plasma cell differentiation, and did not induce platelet aggregation in preclinical studies. In a phase 1 study in healthy volunteers, VIB4920 suppressed antigen-specific IgG in a dose-dependent fashion after priming and boosting with the T-dependent antigen, KLH. Furthermore, VIB4920 significantly reduced circulating Ki67+ dividing B cells, class-switched memory B cells, and a plasma cell gene signature after immunization. In a phase 1b proof-of-concept study in patients with rheumatoid arthritis, VIB4920 significantly decreased disease activity, achieving low disease activity or clinical remission in more than 50% of patients in the two higher-dose groups. Dose-dependent decreases in rheumatoid factor autoantibodies and Vectra DA biomarker score provide additional evidence that VIB4920 effectively blocked the CD40/CD40L pathway. VIB4920 demonstrated a good overall safety profile in both clinical studies. Together, these data demonstrate the potential of VIB4920 to significantly affect autoimmune disease and humoral immune activation and to support further evaluation of this molecule in inflammatory conditions.
Assuntos
Autoanticorpos/metabolismo , Autoimunidade/fisiologia , Ligante de CD40/metabolismo , Proliferação de Células/fisiologia , Agregação Plaquetária/fisiologia , Artrite Reumatoide/metabolismo , Linfócitos B/metabolismo , Antígenos CD40/metabolismo , Voluntários Saudáveis , HumanosRESUMO
Purpose: To use preclinical models to identify a dosing schedule that improves tolerability of highly potent pyrrolobenzodiazepine dimers (PBDs) antibody drug conjugates (ADCs) without compromising antitumor activity.Experimental Design: A series of dose-fractionation studies were conducted to investigate the pharmacokinetic drivers of safety and efficacy of PBD ADCs in animal models. The exposure-activity relationship was investigated in mouse xenograft models of human prostate cancer, breast cancer, and gastric cancer by comparing antitumor activity after single and fractionated dosing with tumor-targeting ADCs conjugated to SG3249, a potent PBD dimer. The exposure-tolerability relationship was similarly investigated in rat and monkey toxicology studies by comparing tolerability, as assessed by survival, body weight, and organ-specific toxicities, after single and fractionated dosing with ADCs conjugated to SG3249 (rats) or SG3400, a structurally related PBD (monkeys).Results: Observations of similar antitumor activity in mice treated with single or fractionated dosing suggests that antitumor activity of PBD ADCs is more closely related to total exposure (AUC) than peak drug concentrations (Cmax). In contrast, improved survival and reduced toxicity in rats and monkeys treated with a fractionated dosing schedule suggests that tolerability of PBD ADCs is more closely associated with Cmax than AUC.Conclusions: We provide the first evidence that fractionated dosing can improve preclinical tolerability of at least some PBD ADCs without compromising efficacy. These findings suggest that preclinical exploration of dosing schedule could be an important clinical strategy to improve the therapeutic window of highly potent ADCs and should be investigated further. Clin Cancer Res; 23(19); 5858-68. ©2017 AACR.
Assuntos
Benzodiazepinas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Pirróis/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Benzodiazepinas/química , Benzodiazepinas/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Haplorrinos , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Masculino , Camundongos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Pirróis/química , Pirróis/imunologia , Ratos , Índice Terapêutico , Trastuzumab/administração & dosagem , Trastuzumab/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Human S100A7 (psoriasin) is considered a marker for specific stages of breast cancer. hS100A15 is almost identical to hS100A7 and difficult to discriminate. We developed specific probes to distinguish hS100A7 and hS100A15, and demonstrate their differential distribution in normal breast tissue. Further, hS100A7 and S100A15 transcripts are elevated in ER/PR negative breast cancers, but hS100A15 protein is detected in all cancer specimens while hS100A7 protein is sporadically expressed. The differential regulation, expression and distribution of hS100A7 and hS100A15 and their reported distinct functions are compelling reasons to discriminate among these proteins in normal breast and breast cancers.
Assuntos
Neoplasias da Mama/química , Mama/química , Proteínas de Ligação ao Cálcio/análise , Proteínas S100/análise , Proteínas de Ligação ao Cálcio/genética , Carcinoma Ductal de Mama/química , Feminino , Humanos , Imuno-Histoquímica , Receptores de Estrogênio/análise , Receptores de Progesterona/análise , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/genéticaRESUMO
We recently used RNA interference to show that a negative correlation of L-asparaginase (L-ASP) chemotherapeutic activity with asparagine synthetase (ASNS) expression in the ovarian subset of the NCI-60 cell line panel is causal. To determine whether that relationship would be sustained in a larger, more diverse set of ovarian cell lines, we have now measured ASNS mRNA expression using microarrays and a branched-DNA RNA assay, ASNS protein expression using an electrochemiluminescent immunoassay, and L-ASP activity using an MTS assay on 19 human ovarian cancer cell lines. Contrary to our previous findings, L-ASP activity was only weakly correlated with ASNS mRNA expression; Pearson's correlation coefficients were r = -0.21 for microarray data and r = -0.39 for the branched-DNA RNA assay, with just the latter being marginally statistically significant (P = 0.047, one-tailed). ASNS protein expression measured by liquid-phase immunoassay exhibited a much stronger correlation (r = -0.65; P = 0.0014, one-tailed). We conclude that ASNS protein expression measured by immunoassay is a strong univariate predictor of L-ASP activity in ovarian cancer cell lines. These findings provide rationale for evaluation of ASNS protein expression as a predictive biomarker of clinical L-ASP activity in ovarian cancer.
Assuntos
Asparaginase/metabolismo , Aspartato-Amônia Ligase/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Ovarianas/enzimologia , Aspartato-Amônia Ligase/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Impressões Digitais de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Human S100A7 (psoriasin) is overexpressed in inflammatory diseases. The recently discovered, co-evolved hS100A15 is almost identical in sequence and up-regulated with hS100A7 during cutaneous inflammation. The functional role of these closely related proteins for inflammation remains undefined. By generating specific Abs, we demonstrate that hS100A7 and hS100A15 proteins are differentially expressed by specific cell types in the skin. Although highly homologous, both proteins are chemoattractants with distinct chemotactic activity for leukocyte subsets. We define RAGE (receptor for advanced glycation end products) as the hS100A7 receptor, whereas hS100A15 functions through a Gi protein-coupled receptor. hS100A7-RAGE binding, signaling, and chemotaxis are zinc-dependent in vitro, reflecting the previously reported zinc-mediated changes in the hS100A7 dimer structure. When combined, hS100A7 and hS100A15 potentiate inflammation in vivo. Thus, proinflammatory synergism in disease may be driven by the diverse biology of these almost identical proteins that have just recently evolved. The identified S100A7 interaction with RAGE may provide a novel therapeutic target for inflammation.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Quimiotaxia de Leucócito , Inflamação/imunologia , Queratinócitos/imunologia , Proteínas S100/metabolismo , Animais , Proteínas de Ligação ao Cálcio/imunologia , Linhagem Celular , Humanos , Inflamação/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Subpopulações de Linfócitos , Camundongos , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/imunologiaRESUMO
Here we describe a novel strategy using multiplexes of synthetic small interfering RNAs (siRNAs) corresponding to multiple gene targets in order to compress RNA interference (RNAi) screen size. Before investigating the practical use of this strategy, we first characterized the gene-specific RNAi induced by a large subset (258 siRNAs, 129 genes) of the entire siRNA library used in this study ( approximately 800 siRNAs, approximately 400 genes). We next demonstrated that multiplexed siRNAs could silence at least six genes to the same degree as when the genes were targeted individually. The entire library was then used in a screen in which randomly multiplexed siRNAs were assayed for their affect on cell viability. Using this strategy, several gene targets that influenced the viability of a breast cancer cell line were identified. This study suggests that the screening of randomly multiplexed siRNAs may provide an important avenue towards the identification of candidate gene targets for downstream functional analyses and may also be useful for the rapid identification of positive controls for use in novel assay systems. This approach is likely to be especially applicable where assay costs or platform limitations are prohibitive.
Assuntos
Interferência de RNA , RNA Interferente Pequeno/química , Linhagem Celular Tumoral , Sobrevivência Celular , Biblioteca Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/síntese químicaRESUMO
L-Asparaginase (l-ASP), a bacterial enzyme used since the 1970s to treat acute lymphoblastic leukemia, selectively starves cells that cannot synthesize sufficient asparagine for their own needs. Molecular profiling of the NCI-60 cancer cell lines using five different microarray platforms showed strong negative correlations of asparagine synthetase (ASNS) expression and DNA copy number with sensitivity to l-ASP in the leukemia and ovarian cancer cell subsets. To assess whether the ovarian relationship is causal, we used RNA interference to silence ASNS in three ovarian lines and observed 4- to 5-fold potentiation of sensitivity to l-ASP with two of the lines. For OVCAR-8, the line that expresses the least ASNS, the potentiation was >500-fold. Significantly, that potentiation was >700-fold in the multidrug-resistant derivative OVCAR-8/ADR, showing that the causal relationship between ASNS expression and l-ASP activity survives development of classical multidrug resistance. Tissue microarrays confirmed low ASNS expression in a subset of clinical ovarian cancers as well as other tumor types. Overall, this pharmacogenomic/pharmacoproteomic study suggests the use of l-ASP for treatment of a subset of ovarian cancers (and perhaps other tumor types), with ASNS as a biomarker for patient selection.
Assuntos
Antineoplásicos/farmacologia , Asparaginase/farmacologia , Aspartato-Amônia Ligase/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Ovarianas/enzimologia , Antineoplásicos/toxicidade , Asparaginase/toxicidade , Aspartato-Amônia Ligase/genética , Linhagem Celular Tumoral , DNA de Neoplasias/metabolismo , Resistência a Múltiplos Medicamentos , Feminino , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/patologia , Interferência de RNA , RNA Mensageiro/metabolismo , Fatores de TempoRESUMO
The calcium-binding proteins of the human S100A7/A15 (hS100A7/A15) subfamily are differentially expressed in normal and pathological epidermis. The hS100A7 (psoriasin) and S100A15 reside in a chromosomal cluster of highly similar paralogs. To exploit the power of mouse models for determining functions of gene products, the corresponding S100A7/A15 ortholog was cloned and examined in murine skin. The single mouse S100A15 (mS100A15) gene encodes a protein of 104 amino acids with a predicted molecular weight of 12,870 Da and two EF-hand calcium binding sites. Using gene-specific primers and specific antibodies, expression of mS100A15 in both skin and isolated keratinocytes is confined to differentiating granular and cornified epidermal cells. Immunoblotting of epidermal extracts revealed a series of high molecular weight bands that are also recognized by an antibody for transglutaminase-mediated protein crosslinks. mS100A15 expression is upregulated in cultured keratinocytes induced to differentiate by calcium or phorbol esters. Maximal induction occurs concordantly with expression of late differentiation markers. Induction is enhanced in keratinocytes overexpressing protein kinase Calpha and is dependent on activator protein-1 transcription factors. The regulation, expression pattern and crosslinking of mS100A15 are consistent with the characteristics of the human orthologs, providing a valid surrogate model to study changes in these proteins associated with cutaneous pathologies.
Assuntos
Proteínas de Ligação ao Cálcio/genética , Mapeamento Cromossômico , Epiderme/crescimento & desenvolvimento , Epiderme/fisiologia , Regulação da Expressão Gênica , Modelos Animais , Processamento de Proteína Pós-Traducional , Proteínas S100/genética , Aminoácidos/análise , Animais , Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Células Epidérmicas , Epiderme/química , Humanos , Queratinócitos/química , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos , Ésteres de Forbol/farmacologia , Proteína Quinase C-alfa/fisiologia , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/análise , Proteínas S100/química , Proteínas S100/fisiologia , Dermatopatias/fisiopatologia , Neoplasias Cutâneas/genéticaRESUMO
D-phenylglycine (D-Phg) is an important side chain building block for semi-synthetic penicillins and cephalosporins such as ampicillin and cephalexin. To produce d-Phg ultimately from glucose, metabolic engineering was applied. Starting from phenylpyruvate, which is the direct precursor of L-phenylalanine, an artificial D-Phg biosynthesis pathway was created. This three-step route is composed of the enzymes hydroxymandelate synthase (HmaS), hydroxymandelate oxidase (Hmo), and the stereoinverting hydroxyphenylglycine aminotransferase (HpgAT). Together they catalyse the conversion of phenylpyruvate via mandelate and phenylglyoxylate to D-Phg. The corresponding genes were obtained from Amycolatopsis orientalis, Streptomyces coelicolor, and Pseudomonas putida. Combined expression of these activities in E. coli strains optimized for the production of L-phenylalanine resulted in the first completely fermentative production of D-Phg.
Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Glicina/análogos & derivados , Engenharia de Proteínas/métodos , Melhoramento Genético/métodos , Glicina/genética , Glicina/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas Recombinantes/metabolismoRESUMO
The monocyclic beta-lactam antibiotic nocardicin A is related structurally and biologically to the bicyclic beta-lactams comprised of penicillins/cephalosporins, clavams, and carbapenems. Biosynthetic gene clusters are known for each of the latter, but not for monocyclic beta-lactams. A previously cloned gene encoding an enzyme specific to the biosynthetic pathway was used to isolate the nocardicin A cluster from Nocardia uniformis. Sequence analysis revealed the presence of 14 open reading frames involved in antibiotic production, resistance, and export. Among these are a two-protein nonribosomal peptide synthetase system, p-hydroxyphenylglycine biosynthetic genes, an S-adenosylmethionine-dependent 3-amino-3-carboxypropyl transferase (Nat), and a cytochrome P450. Gene disruption mutants of Nat, as well as an activation domain of the NRPS system, led to loss of nocardicin A formation. Several enzymes involved in antibiotic biosynthesis were heterologously overproduced, and biochemical characterization confirmed their proposed activities.