Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2682, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160875

RESUMO

Formate can be envisioned at the core of a carbon-neutral bioeconomy, where it is produced from CO2 by (electro-)chemical means and converted into value-added products by enzymatic cascades or engineered microbes. A key step in expanding synthetic formate assimilation is its thermodynamically challenging reduction to formaldehyde. Here, we develop a two-enzyme route in which formate is activated to formyl phosphate and subsequently reduced to formaldehyde. Exploiting the promiscuity of acetate kinase and N-acetyl-γ-glutamyl phosphate reductase, we demonstrate this phosphate (Pi)-based route in vitro and in vivo. We further engineer a formyl phosphate reductase variant with improved formyl phosphate conversion in vivo by suppressing cross-talk with native metabolism and interface the Pi route with a recently developed formaldehyde assimilation pathway to enable C2 compound formation from formate as the sole carbon source in Escherichia coli. The Pi route therefore offers a potent tool in expanding the landscape of synthetic formate assimilation.


Assuntos
Formiatos , Fosfatos , Carbono , Escherichia coli/genética , Formaldeído
2.
J Fungi (Basel) ; 8(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547610

RESUMO

In recent years, it was shown that itaconic acid can be produced from glucose with Ustilago strains at up to maximum theoretical yield. The use of acetate and formate as co-feedstocks can boost the efficiency of itaconate production with Ustilaginaceae wild-type strains by reducing the glucose amount and thus the agricultural land required for the biotechnological production of this chemical. Metabolically engineered strains (U. cynodontis Δfuz7 Δcyp3 ↑Pria1 and U. cynodontis Δfuz7 Δcyp3 PetefmttA ↑Pria1) were applied in itaconate production, obtaining a titer of 56.1 g L-1 and a yield of 0.55 gitaconate per gsubstrate. Both improved titer and yield (increase of 5.2 g L-1 and 0.04 gitaconate per gsubstrate, respectively) were achieved when using sodium formate as an auxiliary substrate. By applying the design-of-experiments (DoE) methodology, cultivation parameters (glucose, sodium formate and ammonium chloride concentrations) were optimized, resulting in two empirical models predicting itaconate titer and yield for U. cynodontis Δfuz7 Δcyp3 PetefmttA ↑Pria1. Thereby, an almost doubled itaconate titer of 138 g L-1 was obtained and a yield of 0.62 gitaconate per gsubstrate was reached during confirmation experiments corresponding to 86% of the theoretical maximum. In order to close the carbon cycle by production of the co-feed via a "power-to-X" route, the biphasic Ru-catalysed hydrogenation of CO2 to formate could be integrated into the bioprocess directly using the obtained aqueous solution of formates as co-feedstock without any purification steps, demonstrating the (bio)compatibility of the two processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA