Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163343

RESUMO

Recharging primary batteries is of great importance for increasing the energy density of energy storage systems to power electric aircraft and beyond. Carbon fluoride (CFx) cathodes are characterized by high specific capacity and energy density (865 mAh g-1 and 2180 Wh kg-1, respectively). Preventing the crystallization of LiF with an intermediate and lowering the energy barrier from LiF to CFx is expected to render the Li/CFx battery reversible. In this study, taking the advantage of a high-voltage-stable all-fluorinated electrolyte containing the boron-based anion receptor tris(trimethylsilyl)borate (TMSB), a rechargeable Li/CFx battery was realized with a reversible capacity of 465.9 mAh g-1 and an energy density of 1183.9 Wh kg-1, approximately 53% of that in the first discharge. After the first discharge, the charge-discharge profile featured rechargeable characteristics. In situ X-ray diffraction, ex situ soft X-ray absorption spectroscopy, pair distribution function analysis, and other measurements confirmed the generation and decomposition of Li-F and C-F bonds during cycling. Density functional theory calculations and nuclear magnetic resonance spectroscopy confirmed that TMSB serves as an anion carrier through the generation of a [TMSB-F]- complex, facilitating the conversion reactions during cycling. This study demonstrated a facile and low-cost approach for realizing high-energy-density, reversible Li/CFx batteries.

2.
Angew Chem Int Ed Engl ; 63(19): e202402456, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38415324

RESUMO

The solid electrolyte interphase (SEI) membrane on the Li metal anode tends to breakdown and undergo reconstruction during operation, causing Li metal batteries to experience accelerated decay. Notably, an SEI membrane with self-healing characteristics can help considerably in stabilizing the Li-electrolyte interface; however, uniformly fixing the repairing agent onto the anode remains a challenging task. By leveraging the noteworthy film-forming attributes of bis(fluorosulfonyl)imide (FSI-) anions and the photopolymerization property of the vinyl group, the ionic liquid 1-vinyl-3-methylimidazolium bis(fluorosulfonyl)imide (VMI-FSI) was crosslinked with polyethylene oxide (PEO) in this study to form a self-healing film fixing FSI- groups as the repairing agent. When they encounter lithium metal, the FSI- groups are chemically decomposed into LiF & Li3N, which assist forming SEI membrane on lithium sheet and repairing SEI membrane in the cracks lacerated by lithium dendrite. Furthermore, the FSI- anions exchanged from film are electrochemically decomposed to generate inorganic salts to strengthen the SEI membrane. Benefiting from the self-healing behavior of the film, Li/LiCoO2 cells with the loading of 16.3 mg cm-2 exhibit the initial discharge capacities of 183.0 mAh ⋅ g-1 and are stably operated for 500 cycles with the retention rates of 81.4 % and the average coulombic efficiency of 99.97 %, operated between 3.0-4.5 V vs. Li+/Li. This study presents a new design approach for self-healing Li metal anodes and durable lithium metal battery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA