Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 54(8): 1103-1116, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835913

RESUMO

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.


Assuntos
COVID-19 , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Alelos , COVID-19/genética , Hospitalização , Humanos , SARS-CoV-2/genética
2.
J Virol ; 96(7): e0170521, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35262371

RESUMO

The coronavirus SARS-CoV-2 caused the COVID-19 global pandemic leading to 5.3 million deaths worldwide as of December 2021. The human intestine was found to be a major viral target which could have a strong impact on virus spread and pathogenesis since it is one of the largest organs. While type I interferons (IFNs) are key cytokines acting against systemic virus spread, in the human intestine type III IFNs play a major role by restricting virus infection and dissemination without disturbing homeostasis. Recent studies showed that both type I and III IFNs can inhibit SARS-CoV-2 infection, but it is not clear whether one IFN controls SARS-CoV-2 infection of the human intestine better or with a faster kinetics. In this study, we could show that type I and III IFNs both possess antiviral activity against SARS-CoV-2 in human intestinal epithelial cells (hIECs); however, type III IFN is more potent. Shorter type III IFN pretreatment times and lower concentrations were required to efficiently reduce virus load compared to type I IFNs. Moreover, type III IFNs significantly inhibited SARS-CoV-2 even 4 h postinfection and induced a long-lasting antiviral effect in hIECs. Importantly, the sensitivity of SARS-CoV-2 to type III IFNs was virus specific since type III IFN did not control VSV infection as efficiently. Together, these results suggest that type III IFNs have a higher potential for IFN-based treatment of SARS-CoV-2 intestinal infection compared to type I IFNs. IMPORTANCE SARS-CoV-2 infection is not restricted to the respiratory tract and a large number of COVID-19 patients experience gastrointestinal distress. Interferons are key molecules produced by the cell to combat virus infection. Here, we evaluated how two types of interferons (type I and III) can combat SARS-CoV-2 infection of human gut cells. We found that type III interferons were crucial to control SARS-CoV-2 infection when added both before and after infection. Importantly, type III interferons were also able to produce a long-lasting effect, as cells were protected from SARS-CoV-2 infection up to 72 h posttreatment. This study suggested an alternative treatment possibility for SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Interferon Tipo I , Interferons , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Células Cultivadas , Células Epiteliais , Humanos , Interferon Tipo I/farmacologia , Interferons/farmacologia , SARS-CoV-2/efeitos dos fármacos , Interferon lambda
3.
Cancer Sci ; 113(5): 1575-1586, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35179814

RESUMO

MEN1, which encodes menin protein, is the most frequently mutated gene in pancreatic neuroendocrine neoplasms (pNEN). Pleiotrophin (PTN) has been reported as a downstream factor of menin that promotes metastasis in different tumor entities. In this study, the effect of menin and its link to PTN were assessed using features of pNEN cells and the outcome of patients with pNEN. The expression levels of menin and PTN in tissues from patients with pNEN were examined using qRT-PCR and western blot and compared with their metastasis status. Functional assays, including transwell migration/invasion and scratch wound-healing assays, were performed on specifically designed CRISPR/Cas9-mediated MEN1-knockout (MEN1-KO) pNEN cell lines (BON1MEN1-KO and QGP1MEN1-KO ) to study the metastasis of pNEN. Among 30 patients with menin-negative pNEN, 21 revealed a strong protein expression of PTN. This combination was associated with metastasis and shorter disease-free survival. Accordingly, in BON1MEN1-KO and QGP1MEN1-KO cells, PTN protein expression was positively associated with enhanced cell migration and invasion, which could be reversed using PTN silencing. PTN is a predicting factor of metastatic behavior of menin-deficient-pNEN. In vitro, menin is able to both promote and suppress the metastasis of pNEN by regulating PTN expression depending on the tumoral origin of pNEN cells.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Neoplasias Pancreáticas , Biologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Humanos , Neoplasia Endócrina Múltipla Tipo 1/patologia , Neoplasias Pancreáticas/patologia , Fatores de Transcrição/metabolismo
4.
Front Immunol ; 12: 772588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868037

RESUMO

Interferon lambdas (IFNλ) (also known as type III IFNs) are critical cytokines that combat infection predominantly at barrier tissues, such as the lung, liver, and gastrointestinal tract. Humans have four IFNλs (1-4), where IFNλ1-3 show ~80%-95% homology, and IFNλ4 is the most divergent displaying only ~30% sequence identity. Variants in IFNλ4 in humans are associated with the outcome of infection, such as with hepatitis C virus. However, how IFNλ4 variants impact cytokine signalling in other tissues and how well this is conserved is largely unknown. In this study, we address whether differences in antiviral signalling exist between IFNλ4 variants in human hepatocyte and intestinal cells, comparing them to IFNλ3. We demonstrate that compared to IFNλ3, wild-type human IFNλ4 induces a signalling response with distinct magnitudes and kinetics, which is modified by naturally occurring variants P70S and K154E in both cell types. IFNλ4's distinct antiviral response was more rapid yet transient compared to IFNλ1 and 3. Additionally, divergent antiviral kinetics were also observed using non-human primate IFNλs and cell lines. Furthermore, an IFNλ4-like receptor-interacting interface failed to alter IFNλ1's kinetics. Together, our data provide further evidence that major functional differences exist within the IFNλ gene family. These results highlight the possible tissue specialisation of IFNλs and encourage further investigation of the divergent, non-redundant activities of IFNλ4 and other IFNλs.


Assuntos
Interleucinas/imunologia , Animais , Linhagem Celular , Vírus da Encefalomiocardite , Humanos , Cinética , Macaca mulatta , Fator de Transcrição STAT1/imunologia , Transdução de Sinais
5.
Front Immunol ; 11: 608645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362795

RESUMO

Interferons (IFNs) constitute the first line of defense against microbial infections particularly against viruses. They provide antiviral properties to cells by inducing the expression of hundreds of genes known as interferon-stimulated genes (ISGs). The two most important IFNs that can be produced by virtually all cells in the body during intrinsic innate immune response belong to two distinct families: the type I and type III IFNs. The type I IFN receptor is ubiquitously expressed whereas the type III IFN receptor's expression is limited to epithelial cells and a subset of immune cells. While originally considered to be redundant, type III IFNs have now been shown to play a unique role in protecting mucosal surfaces against pathogen challenges. The mucosal specific functions of type III IFN do not solely rely on the restricted epithelial expression of its receptor but also on the distinct means by which type III IFN mediates its anti-pathogen functions compared to the type I IFN. In this review we first provide a general overview on IFNs and present the similarities and differences in the signal transduction pathways leading to the expression of either type I or type III IFNs. By highlighting the current state-of-knowledge of the two archetypical mucosal surfaces (e.g. the respiratory and intestinal epitheliums), we present the differences in the signaling cascades used by type I and type III IFNs to uniquely induce the expression of ISGs. We then discuss in detail the role of each IFN in controlling pathogen infections in intestinal and respiratory epithelial cells. Finally, we provide our perspective on novel concepts in the field of IFN (stochasticity, response heterogeneity, cellular polarization/differentiation and tissue microenvironment) that we believe have implications in driving the differences between type I and III IFNs and could explain the preferences for type III IFNs at mucosal surfaces.


Assuntos
Interferon Tipo I/imunologia , Interferons/imunologia , Mucosa Intestinal/imunologia , Mucosa Respiratória/imunologia , Animais , Células Epiteliais/imunologia , Humanos , Imunidade Inata/imunologia , Interferon lambda
6.
J Interferon Cytokine Res ; 39(10): 650-660, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199715

RESUMO

Intestinal epithelial cells (IECs) are the primary target of enteric viruses. Their infection by viruses leads to the upregulation of both type I and type III interferons (IFNs). These IFNs then act in an autocrine and paracrine manner to protect IECs from viral propagation. To date, whether both IFNs use similar signaling pathways and whether these 2 cytokines can act synergistically to protect against viral infection remain unclear. Using human IECs depleted of either the type I or type III IFN receptor, we found that both signal transduction pathways are interconnected and influence each other at the level of interferon-stimulated gene (ISG) expression and efficiency of antiviral protection. Precisely, in human IECs, the presence of a functional type III IFN receptor negatively regulates type I IFN signaling and activity, whereas the presence of type I IFN receptor positively reinforces type III IFN signaling and function. We propose that this complex crosstalk allows for a preferential type III IFN-mediated protection of human intestinal cells.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Interferon Tipo I/metabolismo , Interferons/metabolismo , Mucosa Intestinal/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Células Epiteliais/citologia , Humanos , Interferon Tipo I/genética , Interferons/genética , Mucosa Intestinal/citologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Interferon lambda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA