Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Cell Signal ; 124: 111387, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251053

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19). Severe and fatal COVID-19 cases often display cytokine storm i.e. significant elevation of pro-inflammatory cytokines and acute respiratory distress syndrome (ARDS) with systemic hypoxia. Understanding the mechanisms of these pathogenic manifestations would be essential for the prevention and especially treatment of COVID-19 patients. Here, using a dual luciferase reporter assay for hypoxia-response element (HRE), we initially identified SARS-CoV-2 nonstructural protein 5 (NSP5), NSP16, and open reading frame 3a (ORF3a) to upregulate hypoxia-inducible factor-1α (HIF-1α) signaling. Further experiments showed NSP16 to have the most prominent effect on HIF-1α, thus contributing to the induction of COVID-19 associated pro-inflammatory response. We demonstrate that NSP16 interrupts von Hippel-Lindau (VHL) protein interaction with HIF-1α, thereby inhibiting ubiquitin-dependent degradation of HIF-1α and allowing it to bind HRE region in the IL-6 promoter region. Taken together, the findings imply that SARS-CoV-2 NSP16 induces HIF-1α expression, which in turn exacerbates the production of IL-6.

2.
FEMS Microbiol Rev ; 48(5)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39231808

RESUMO

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 nonstructural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.


Assuntos
COVID-19 , Epigênese Genética , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Regulação da Expressão Gênica , Cromatina/metabolismo , Cromatina/genética
3.
Autophagy ; : 1-11, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38869076

RESUMO

Protein aggregation caused by the disruption of proteostasis will lead to cellular cytotoxicity and even cell death, which is implicated in multiple neurodegenerative diseases. The elimination of aggregated proteins is mediated by selective macroautophagy receptors, which is termed aggrephagy. However, the identity and redundancy of aggrephagy receptors in recognizing substrates remain largely unexplored. Here, we find that CCDC50, a highly expressed autophagy receptor in brain, is recruited to proteotoxic stresses-induced polyubiquitinated protein aggregates and ectopically expressed aggregation-prone proteins. CCDC50 recognizes and further clears these cytotoxic aggregates through autophagy. The ectopic expression of CCDC50 increases the tolerance to stress-induced proteotoxicity and hence improved cell survival in neuron cells, whereas CCDC50 deficiency caused accumulation of lipid deposits and polyubiquitinated protein conjugates in the brain of one-year-old mice. Our study illustrates how aggrephagy receptor CCDC50 combats proteotoxic stress for the benefit of neuronal cell survival, thus suggesting a protective role in neurotoxic proteinopathy.Abbreviations: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; ATG5: autophagy related 5; BODIPY: boron-dipyrromethene; CASP3: caspase 3; CCDC50: coiled-coil domain containing 50; CCT2: chaperonin containing TCP1 subunit 2; CHX: cycloheximide; CQ: chloroquine; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR-associated system 9; DAPI: 4',6-diamidino-2-phenylindole; FK2: Anti-ubiquitinylated proteins antibody, clone FK2; FUS: FUS RNA binding protein; GFP: green fluorescent protein; HD: Huntington disease; HTT: huntingtin; KEGG: Kyoto Encyclopedia of Genes and Genomes; LDS: LIR-docking site; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MIU: motif interacting with ubiquitin; NBR1: NBR1, autophagy cargo receptor; OPTN: optineurin; PD: Parkinson disease; PI: propidium iodide; ROS: reactive oxygen species; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; Ub: ubiquitin; UDS: UIM-docking site; UIM: ubiquitin interacting motif; UPS: ubiquitin-proteasome system.

4.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792173

RESUMO

The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.


Assuntos
Antivirais , Inibidores Enzimáticos , Metiltransferases , Simulação de Dinâmica Molecular , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Metiltransferases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Antivirais/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Avaliação Pré-Clínica de Medicamentos , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Sítios de Ligação , Exorribonucleases
5.
Nat Ecol Evol ; 8(5): 947-959, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519631

RESUMO

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.


Assuntos
Culicidae , Mosquitos Vetores , Viroma , Animais , Culicidae/virologia , China , Mosquitos Vetores/virologia , Metagenômica , Arbovírus/genética , Arbovírus/classificação , Filogenia , Biodiversidade
6.
J Med Virol ; 96(2): e29411, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285434

RESUMO

Cap RNA methylations play important roles in the replication, evasion of host RNA sensor recognition, and pathogenesis. Coronaviruses possess both guanine N7- and 2'-O-ribose methyltransferases (N7-MTase and 2'-O-MTase) encoded by nonstructural protein (nsp) 14 and nsp16/10 complex, respectively. In this study, we reconstituted the two-step RNA methylations of N7-MTase and 2'-O-MTase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and demonstrated its common and different features in comparison with that of SARS-CoV. We revealed that the nsp16/10 2'-O-MTase of SARS-CoV-2 has a broader substrate selectivity than the counterpart of SARS-CoV and can accommodate both unmethylated and uncapped RNA substrates in a sequence-independent manner. Most intriguingly, the substrate selectivity of nsp16/10 complex is not determined by the apoenzyme of nsp16 MTase but by its cofactor nsp10. These results provide insight into the unique features of SARS-CoV-2 MTases and may help develop strategies to precisely intervene in the methylation pathway and pathogenesis of SARS-CoV-2.


Assuntos
COVID-19 , Metiltransferases , Humanos , Metiltransferases/genética , SARS-CoV-2/genética , Metilação de RNA , Capuzes de RNA
8.
EMBO Rep ; 24(10): e56948, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672005

RESUMO

The maintenance of lysosome homeostasis is crucial for cell growth. Lysosome-dependent degradation and metabolism sustain tumor cell survival. Here, we demonstrate that CCDC50 serves as a lysophagy receptor, promoting tumor progression and invasion by controlling lysosomal integrity and renewal. CCDC50 monitors lysosomal damage, recognizes galectin-3 and K63-linked polyubiquitination on damaged lysosomes, and specifically targets them for autophagy-dependent degradation. CCDC50 deficiency causes the accumulation of ruptured lysosomes, impaired autophagic flux, and superfluous reactive oxygen species, consequently leading to cell death and tumor suppression. CCDC50 expression is associated with malignancy, progression to metastasis, and poor overall survival in human melanoma. Targeting CCDC50 suppresses tumor growth and lung metastasis, and enhances the effect of BRAFV600E inhibition. Thus, we demonstrate critical roles of CCDC50-mediated clearance of damaged lysosomes in supporting tumor growth, hereby identifying a potential therapeutic target of melanoma.

9.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732272

RESUMO

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Using a meta-transcriptomic approach, we analysed the virome of 2,438 individual mosquitos (79 species), spanning ~4000 km along latitudes and longitudes in China. From these data we identified 393 core viral species associated with mosquitos, including seven (putative) arbovirus species. We identified potential species and geographic hotspots of viral richness and arbovirus occurrence, and demonstrated that host phylogeny had a strong impact on the composition of individual mosquito viromes. Our data revealed a large number of viruses shared among mosquito species or genera, expanding our knowledge of host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, possibly facilitated by long-distance mosquito migrations. Together, our results greatly expand the known mosquito virome, linked the viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the ecology of viruses of insect vectors.

10.
Nat Commun ; 14(1): 4079, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429936

RESUMO

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.


Assuntos
COVID-19 , Quirópteros , Coinfecção , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Filogenia , SARS-CoV-2 , Viroma , China/epidemiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
11.
J Med Virol ; 95(6): e28832, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37264691

RESUMO

The protein activator of protein kinase R (PKR) (PACT) has been shown to play a crucial role in stimulating the host antiviral response through the activation of PKR, retinoic acid-inducible gene I, and melanoma differentiation-associated protein 5. Whether PACT can inhibit viral replication independent of known mechanisms is still unrevealed. In this study, we show that, like many viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks GSK-3ß to facilitate its replication. GSK-3ß-induced phosphorylation on N protein increased the interaction between N protein and nsp3. Thus, GSK-3ß-N-nsp3 cascade promotes viral replication. Although SARS-CoV-2 can sabotage the activation of AKT, the upstream proteins suppressing the activation of GSK-3ß, we found that the host can use PACT, another protein kinase, instead of AKT to decrease the activity of GSK-3ß and the interaction between PACT and GSK-3ß is enhanced upon viral infection. Moreover, PACT inhibited the activity of GSK-3ß independent of its well-studied double-stranded RNA binding and PKR activating ability. In summary, this study identified an unknown function of PACT in inhibiting SARS-CoV-2 replication through the blockage of GSK-3ß-N-nsp3 cascade.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , SARS-CoV-2/metabolismo , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação
12.
Redox Biol ; 63: 102752, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245288

RESUMO

Viral infection-induced cell death has long been considered as a double-edged sword in the inhibition or exacerbation of viral infections. Patients with severe Coronavirus Disease 2019 (COVID-19) are characterized by multiple organ dysfunction syndrome and cytokine storm, which may result from SARS-CoV-2-induced cell death. Previous studies have observed enhanced ROS level and signs of ferroptosis in SARS-CoV-2 infected cells or specimens of patients with COVID-19, but the exact mechanism is not clear yet. Here, we find SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. SARS-CoV-2 ORF3a promotes the degradation of NRF2 through recruiting Keap1, thereby attenuating cellular resistance to oxidative stress and facilitated cells to ferroptotic cell death. Our study uncovers that SARS-CoV-2 ORF3a functions as a positive regulator of ferroptosis, which might explain SARS-CoV-2-induced damage in multiple organs in COVID-19 patients and imply the potential of ferroptosis inhibition in COVID-19 treatment.


Assuntos
COVID-19 , Ferroptose , Humanos , SARS-CoV-2 , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Tratamento Farmacológico da COVID-19
15.
Antiviral Res ; 213: 105586, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997073

RESUMO

S-217622 (Ensitrelvir) is a reversible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3-chymotrypsin-like protease (3CLpro) inhibitor which obtained emergency regulatory approval in Japan for the treatment of SARS-CoV-2 infection on Nov 22, 2022. Herein, analogs of S-271622 with deuterium-for-hydrogen replacement were synthesized for comparison of the antiviral activities and pharmacokinetic (PK) profiles. Compared to the parent compound, C11-d2-S-217622 compound YY-278 retained in vitro activity against 3CLpro and SARS-CoV-2. X-ray crystal structural studies showed similar interactions of SARS-CoV-2 3CLpro with YY-278 and S-271622. The PK profiling revealed the relatively favorable bioavailability and plasma exposure of YY-278. In addition, YY-278, as well as S-217622, displayed broadly anti-coronaviral activities against 6 other coronaviruses that infect humans and animals. These results laid the foundation for further research on the therapeutic potential of YY-278 against COVID-19 and other coronaviral diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais/uso terapêutico , Japão , Inibidores de Proteases/química
16.
Emerg Microbes Infect ; 12(1): 2178238, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748584

RESUMO

5-Methylcytosine (m5C) is a widespread post-transcriptional RNA modification and is reported to be involved in manifold cellular responses and biological processes through regulating RNA metabolism. However, its regulatory role in antiviral innate immunity has not yet been elucidated. Here, we report that NSUN2, a typical m5C methyltransferase, negatively regulates type I interferon responses during various viral infections, including SARS-CoV-2. NSUN2 specifically mediates m5C methylation of IRF3 mRNA and accelerates its degradation, resulting in low levels of IRF3 and downstream IFN-ß production. Knockout or knockdown of NSUN2 enhanced type I interferon and downstream ISGs during various viral infection in vitro. And in vivo, the antiviral innate response is more dramatically enhanced in Nsun2+/- mice than in Nsun2+/+ mice. The highly m5C methylated cytosines in IRF3 mRNA were identified, and their mutation enhanced cellular IRF3 mRNA levels. Moreover, infection with Sendai virus (SeV), vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), or Zika virus (ZIKV) resulted in a reduction of endogenous NSUN2 levels. Especially, SARS-CoV-2 infection (WT strain and BA.1 omicron variant) also decreased endogenous levels of NSUN2 in COVID-19 patients and K18-hACE2 KI mice, further increasing type I interferon and downstream ISGs. Together, our findings reveal that NSUN2 serves as a negative regulator of interferon response by accelerating the fast turnover of IRF3 mRNA, while endogenous NSUN2 levels decrease during SARS-CoV-2 and various viral infections to boost antiviral responses for effective elimination of viruses.


Assuntos
COVID-19 , Interferon Tipo I , Viroses , Infecção por Zika virus , Zika virus , Animais , Camundongos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Metilação , Zika virus/metabolismo , Camundongos Knockout , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Antivirais , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo
18.
Autophagy ; 19(1): 365-366, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35620989

RESUMO

The assembly of the NLRP3 inflammasome can be initiated by a wide range of stimuli including exogenous infection as well as endogenous damage. Therefore, the tight regulation of the NLRP3 inflammasome is crucial for the host to resist microbial invasion and maintain homeostasis. Our recent work has identified a negative regulator of NLRP3-mediated inflammation, namely CCDC50 (coiled-coil domain containing protein 50). CCDC50 can be induced by NLRP3 agonists and then functions as a macroautophagy/autophagy cargo receptor to recognize K63-polyubiquitinated NLRP3 and deliver it to MAP1LC3/LC3-conjugated phagophores for degradation. CCDC50 inhibits the polymerization of NLRP3 and the recruitment of PYCARD/ASC, consequently suppressing the assembly of inflammasomes. ccdc50-knockout mice are more susceptible to dextran-sulfate (DSS)-induced colitis and exhibit more severe gut inflammation with elevated NLRP3 inflammasome activity, suggesting a protective role of CCDC50 in the pathology and progression of inflammatory bowel disease (IBD). Our finding reveals a function of autophagy-related proteins in the regulation of NLRP3-mediated inflammation, thus demonstrating the intricate crosstalk between autophagy and inflammation.


Assuntos
Colite , Inflamassomos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Autofagia , Colite/induzido quimicamente , Colite/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
19.
Cell Mol Gastroenterol Hepatol ; 15(1): 179-195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36096451

RESUMO

Chronic hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma. However, the function and mechanism of the effect of HBV on host protein ubiquitination remain largely unknown. We aimed at characterizing whether and how HBV promotes self-replication by affecting host protein ubiquitination. In this study, we identified UBXN7, a novel inhibitor for nuclear factor kappa B (NF-κB) signaling, was degraded via interaction with HBV X protein (HBx) to activate NF-κB signaling and autophagy, thereby affecting HBV replication. The expression of UBXN7 was analyzed by Western blot and quantitative reverse transcription polymerase chain reaction in HBV-transfected hepatoma cells and HBV-infected primary human hepatocytes (PHHs). The effects of UBXN7 on HBV replication were analyzed by using in vitro and in vivo assays, including stable isotope labeling by amino acids in cell culture (SILAC) analysis. Changes in HBV replication and the associated molecular mechanisms were analyzed in hepatoma cell lines. SILAC analyses showed that the ubiquitination of UBXN7 was significantly increased in HepG2.2.15 cells compared with control cells. After HBV infection, HBx protein interacted with UBXN7 to promote K48-linked ubiquitination of UBXN7 at K99, leading to UBXN7 degradation. On the other hand, UBXN7 interacted with the ULK domain of IκB kinase ß through its ubiquitin-associating domain to facilitate its degradation. This in turn reduced NF-κB signaling, leading to reduced autophagy and consequently decreased HBV replication.


Assuntos
Vírus da Hepatite B , Transativadores , Proteínas Virais Reguladoras e Acessórias , Replicação Viral , Humanos , Vírus da Hepatite B/fisiologia , Hepatite B Crônica , NF-kappa B/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
20.
bioRxiv ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36451889

RESUMO

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China. This revealed a high frequency of virus co-infection and species spillover among the animals studied, with 12 viruses shared among different bat species, which in turn facilitates virus recombination and reassortment. Of note, we identified five viral species that are likely to be pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV-2 and SARS-CoV, with only five amino acid differences between its receptor-binding domain sequence and that of the earliest sequences of SARS-CoV-2. Functional analysis predicts that this recombinant coronavirus can utilize the human ACE2 receptor such that it is likely to be of high zoonotic risk. Our study highlights the common occurrence of inter-species transmission and co-infection of bat viruses, as well as their implications for virus emergence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA