RESUMO
Osteoarthritis (OA) is a progressive degenerative joint disease, and the underlying molecular mechanisms of OA remain poorly understood. This study aimed to elucidate the relationship between mitochondrial autophagy and OA by identifying key regulatory genes and their biological functions. Utilizing bioinformatics analyses of RNA expression profiles from the GSE55235 dataset, we identified 2,136 differentially expressed genes, leading to the discovery of hub genes associated with mitochondrial autophagy and OA. Gene set enrichment analysis (GSEA) revealed their involvement in critical pathways, highlighting their potential roles in OA pathogenesis. Furthermore, our study explored the immunological landscape of OA, identifying distinct immune cell infiltration patterns that contribute to the disease's inflammatory profile. We also evaluated the therapeutic potential of drugs targeting these hub genes, suggesting potential approaches for OA treatment. Collectively, this study advances our knowledge of mitochondrial autophagy in OA and proposes promising biomarkers and therapeutic targets.
RESUMO
The journal retracts the article "Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis" [...].
RESUMO
Objectives: TANK-binding kinase 1 (TBK1) is pivotal in autoimmune and inflammatory diseases, yet its role in osteoarthritis (OA) remains elusive. This study sought to elucidate the effect of the TBK1 inhibitor BX795 on OA and to delineate the underlying mechanism by which it mitigates OA. Methods: Interleukin-1 Beta (IL-1ß) was utilized to simulate inflammatory responses and extracellular matrix degradation in vitro. In vivo, OA was induced in 8-week-old mice through destabilization of the medial meniscus surgery. The impact of BX795 on OA was evaluated using histological analysis, X-ray, micro-CT, and the von Frey test. Additionally, Western blot, RT-qPCR, and immunofluorescence assays were conducted to investigate the underlying mechanisms of BX795. Results: Phosphorylated TBK1 (P-TBK1) levels were found to be elevated in OA knee cartilage of both human and mice. Furthermore, intra-articular injection of BX795 ameliorated cartilage degeneration and alleviated OA-associated pain. BX795 also counteracted the suppression of anabolic processes and the augmentation of catabolic activity, inflammation, and senescence observed in the OA mice. In vitro studies revealed that BX795 reduced P-TBK1 levels and reversed the effects of anabolism inhibition, catabolism promotion, and senescence induction triggered by IL-1ß. Mechanistically, BX795 inhibited the IL-1ß-induced activation of the cGAS-STING and TLR3-TRIF signaling pathways in chondrocytes. Conclusions: Pharmacological inhibition of TBK1 with BX795 protects articular cartilage by inhibiting the activation of the cGAS-STING and TLR3-TRIF signaling pathways. This action attenuates inflammatory responses and cellular senescence, positioning BX795 as a promising therapeutic candidate for OA treatment. The translational potential of this article: This study furnishes experimental evidence and offers a potential mechanistic explanation supporting the efficacy of BX795 as a promising candidate for OA treatment.
RESUMO
BACKGROUND: Osteoarthritis (OA) is a prevalent age-related disease characterized by the gradual deterioration of cartilage. The involvement of chondrocyte senescence is crucial in the pathogenesis of OA. Desferoxamine (DFO) is an iron chelator with therapeutic potential in various diseases. However, the relationship of chondrocyte senescence and iron homeostasis is largely unknown. METHODS: Chondrocyte senescence was induced using tert-butyl hydroperoxide (TBHP), and the impact of DFO on chondrocyte senescence and iron metabolism was assessed through techniques such as western blotting, qRT-PCR, and ß-Galactosidase staining. To assess the impact of DFO on chondrocyte senescence and the progression of osteoarthritis (OA), the surgical destabilization of the medial meniscus model was established. RESULTS: In chondrocytes, TBHP administration resulted in elevated expression of P16, P21, and P53, as well as alterations in SA-ß-gal staining. Nevertheless, DFO effectively mitigated chondrocyte senescence induced by TBHP, and reversed the decrease in collagen II expression and increase in MMP13 expression caused by TBHP. Mechanismly, TBHP induced NCOA4 expression and iron release in chondrocytes. Excessive iron could induce chondrocyte senescence, whereas, DFO could inhibit NCOA4 expression and restore ferritin level, and chelate excessive iron. Importantly, intra-articular injection of DFO enhanced collagen II expression and reduced expression of P16, P21, and MMP13 of cartilage in OA mice, and delayed cartilage degeneration. CONCLUSIONS: Overall, this study provides evidence that DFO has the potential to alleviate chondrocyte senescence induced by TBHP and slow down the progression of osteoarthritis (OA) by effectively chelating excessive iron. These findings suggest that iron chelation could be a promising therapeutic strategy for treating OA.
Assuntos
Senescência Celular , Condrócitos , Desferroxamina , Homeostase , Ferro , Osteoartrite , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Ferro/metabolismo , Senescência Celular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Progressão da Doença , terc-Butil Hidroperóxido , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Modelos Animais de DoençasRESUMO
BACKGROUND: Z-DNA binding protein 1 (ZBP1) is a nucleic acid sensor that is involved in multiple inflammatory diseases, but whether and how it contributes to osteoarthritis (OA) are unclear. METHODS: Cartilage tissues were harvested from patients with OA and a murine model of OA to evaluate ZBP1 expression. Subsequently, the functional role and mechanism of ZBP1 were examined in primary chondrocytes, and the role of ZBP1 in OA was explored in mouse models. RESULTS: We showed the upregulation of ZBP1 in articular cartilage originating from OA patients and mice with OA after destabilization of the medial meniscus (DMM) surgery. Specifically, knockdown of ZBP1 alleviated chondrocyte damage and protected mice from DMM-induced OA. Mechanistically, tumor necrosis factor alpha induced ZBP1 overexpression in an interferon regulatory factor 1 (IRF1)-dependent manner and elicited the activation of ZBP1 via mitochondrial DNA (mtDNA) release and ZBP1 binding. The upregulated and activated ZBP1 could interact with receptor-interacting protein kinase 1 and activate the transforming growth factor-beta-activated kinase 1-NF-κB signaling pathway, which led to chondrocyte inflammation and extracellular matrix degradation. Moreover, inhibition of the mtDNA-IRF1-ZBP1 axis with Cyclosporine A, a blocker of mtDNA release, could delay the progression of DMM-induced OA. CONCLUSIONS: Our data revealed the pathological role of the mtDNA-IRF1-ZBP1 axis in OA chondrocytes, suggesting that inhibition of this axis could be a viable therapeutic approach for OA.
Assuntos
Condrócitos , DNA Mitocondrial , Fator Regulador 1 de Interferon , Osteoartrite , Proteínas de Ligação a RNA , Animais , Humanos , Masculino , Camundongos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Camundongos Endogâmicos C57BL , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de SinaisRESUMO
This study focuses on the role of topoisomerases (TOPs) in sarcomas (SARCs), highlighting TOPs' influence on sarcoma prognosis through mRNA expression, genetic mutations, immune infiltration, and DNA methylation analysis using transcriptase sequencing and other techniques. The findings indicate that TOP gene mutations correlate with increased inflammation, immune cell infiltration, DNA repair abnormalities, and mitochondrial fusion genes alterations, all of which negatively affect sarcoma prognosis. Abnormal TOP expression may independently affect sarcoma patients' survival. Cutting-edge genomic tools such as Oncomine, gene expression profiling interactive analysis (GEPIA), and cBio Cancer Genomics Portal (cBioPortal) are utilized to explore the TOP gene family (TOP1/1MT/2A/2B/3A/3B) in soft-tissue sarcomas (STSs). This in-depth analysis reveals a notable upregulation of TOP mRNA in STS patients arcoss various SARC subtypes, French Federation Nationale des Centres de Lutte Contre le Cancer classification (FNCLCC) grades, and specific molecular profiles correlating with poorer clinical outcomes. Furthermore, this investigation identifies distinct patterns of immune cell infiltration, genetic mutations, and somatic copy number variations linked to TOP genes that inversely affect patient survival rates. These findings underscore the diagnostic and therapeutic relevance of the TOP gene suite in STSs.
Assuntos
Sarcoma , Humanos , Sarcoma/genética , Sarcoma/terapia , Prognóstico , DNA Topoisomerases/genética , DNA Topoisomerases/metabolismo , Mutação , Genômica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/terapia , Neoplasias de Tecidos Moles/mortalidade , Perfilação da Expressão GênicaRESUMO
BACKGROUND: Osteoarthritis (OA) is a degenerative disease characterized by chronic inflammation of the joint. As the disease progresses, patients will gradually develop symptoms such as pain, physical limitations and even disability. The risk factors for OA include genetics, gender, trauma, obesity, and age. Unfortunately, due to limited understanding of its pathological mechanism, there are currently no effective drugs or treatments to suspend the progression of osteoarthritis. In recent years, some studies found that low-intensity pulsed ultrasound (LIPUS) may have a positive effect on osteoarthritis. Nonetheless, the exact mechanism by which LIPUS affects osteoarthritis remains unknown. It is valuable to explore the specific mechanism of LIPUS in the treatment of OA. METHODS: In this study, we validated the potential therapeutic effect of LIPUS on osteoarthritis by regulating the YAP-RIPK1-NF-κB axis at both cellular and animal levels. To verify the effect of YAP on OA, the expression of YAP was knocked down or overexpressed by siRNA and plasmid in chondrocytes and adeno-associated virus was injected into the knee joint of rats. The effect of LIPUS was investigated in inflammation chondrocytes induced by IL-1ß and in the post-traumatic OA model. RESULTS: In this study, we observed that YAP plays an important role in the development of osteoarthritis and knocking down of YAP significantly inhibited the inflammation and alleviated cartilage degeneration. We also demonstrated that the expression of YAP was increased in osteoarthritis chondrocytes and YAP could interact with RIPK1, thereby regulating the NF-κB signal pathway and influencing inflammation. Moreover, we also discovered that LIPUS decreased the expression of YAP by restoring the impaired autophagy capacity and inhibiting the binding between YAP and RIPK1, thereby delaying the progression of osteoarthritis. Animal experiment showed that LIPUS could inhibit cartilage degeneration and alleviate the progression of OA. CONCLUSIONS: These results showed that LIPUS is effective in inhibiting inflammation and cartilage degeneration and alleviate the progression of OA. As a result, our results provide new insight of mechanism by which LIPUS delays the development of osteoarthritis, offering a novel therapeutic regimen for osteoarthritis.
Assuntos
NF-kappa B , Osteoartrite , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Osteoartrite/terapia , Osteoartrite/patologia , Ondas Ultrassônicas , Inflamação/patologia , Autofagia , Condrócitos , Interleucina-1beta/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismoRESUMO
Aims: Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. Methods: In this study, interleukin-1ß (IL-1ß) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression. Results: The results showed that inhibition of Sat1 expression can reduce inflammation, ferroptosis changes, reactive oxygen species (ROS) level, and lipid-ROS accumulation induced by IL-1ß and Erastin. Knockdown of Sat1 promotes nuclear factor-E2-related factor 2 (Nrf2) signalling. Additionally, knockdown Alox15 can alleviate the inflammation-related protein expression induced by IL-1ß and ferroptosis-related protein expression induced by Erastin. Furthermore, knockdown Nrf2 can reverse these protein expression alterations. Finally, intra-articular injection of diminazene aceturate (DA), an inhibitor of Sat1, enhanced type II collagen (collagen II) and increased Sat1 and Alox15 expression. Conclusion: Our results demonstrate that inhibition of Sat1 could alleviate chondrocyte ferroptosis and inflammation by downregulating Alox15 activating the Nrf2 system, and delaying the progression of OA. These findings suggest that Sat1 provides a new approach for studying and treating OA.
RESUMO
INTRODUCTION: Excess iron contributes to Hemophilic Arthropathy (HA) development. Divalent metal transporter 1 (DMT1) delivers iron into the cytoplasm, thus regulating iron homeostasis. OBJECTIVES: We aimed to investigate whether DMT1-mediated iron homeostasis is involved in bleeding-induced cartilage degeneration and the molecular mechanisms underlying iron overload-induced chondrocyte damage. METHODS: This study established an in vivo HA model by puncturing knee joints of coagulation factor VIII gene knockout mice with a needle, and mimicked iron overload conditions in vitro by treatment of Ferric ammonium citrate (FAC). RESULTS: We demonstrated that blood exposure caused iron overload and cartilage degeneration, as well as elevated expression of DMT1. Furthermore, DMT1 silencing alleviated blood-induced iron overload and cartilage degeneration. In hemophilic mice, articular cartilage degeneration was also suppressed by intro-articularly injection of DMT1 adeno-associated virus 9 (AAV9). Mechanistically, RNA-sequencing analysis indicated the association between iron overload and cGAS-STING pathway. Further, iron overload triggered mtDNA-cGAS-STING pathway activation, which could be effectively mitigated by DMT1 silencing. Additionally, we discovered that RU.521, a potent Cyclic GMP-AMP Synthase (cGAS) inhibitor, successfully suppressed the downward cascades of cGAS-STING, thereby protecting against chondrocyte damage. CONCLUSION: Taken together, DMT1-mediated iron overload promotes chondrocyte damage and murine HA development, and targeted DMT1 may provide therapeutic and preventive approaches in HA.
Assuntos
Sobrecarga de Ferro , Artropatias , Animais , Camundongos , Cartilagem , DNA Mitocondrial/genética , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Camundongos Knockout , Nucleotidiltransferases/metabolismoRESUMO
[This corrects the article DOI: 10.1016/j.isci.2023.107647.].
RESUMO
Ferroptosis is involved in the pathogenesis of osteoarthritis (OA) while suppression of chondrocyte ferroptosis has a beneficial effect on OA. However, the molecular mechanism of ferroptosis in OA remains to be elucidated. P21, an indicator of aging, has been reported to inhibit ferroptosis, but the relationship between P21 and ferroptosis in OA remains unclear. Here, we aimed to investigate the expression and function of P21 in OA chondrocytes, and the involvement of P21 in the regulation of ferroptosis in chondrocytes. First, we demonstrated that high P21 expression was observed in the cartilage from OA patients and destabilized medial meniscus (DMM) mice, and in osteoarthritic chondrocytes induced by IL-1ß, FAC and erastin. P21 knockdown exacerbated the reduction of Col2a1 and promoted the upregulation of MMP13 in osteoarthritic chondrocytes. Meanwhile, P21 knockdown exacerbated cartilage degradation in DMM-induced OA mouse models and decreased GPX4 expression in vivo. Furthermore, P21 knockdown sensitized chondrocytes to ferroptosis induced by erastin, which was closely associated with the accumulation of lipid peroxides. In mechanism, we demonstrated that P21 regulated the stability of GPX4 protein, and the regulation was independent of NRF2. Meanwhile, we found that P21 significantly affected the recruitment of GPX4 to linear ubiquitin chain assembly complex (LUBAC) and regulated the level of M1-linked ubiquitination of GPX4. Overall, our results suggest that P21 plays an essential anti-ferroptosis role in OA by regulating the stability of GPX4.
Assuntos
Ferroptose , Osteoartrite , Humanos , Camundongos , Animais , Condrócitos/metabolismo , Ferroptose/genética , Cartilagem/metabolismo , Modelos Animais de Doenças , Regulação para Cima , Osteoartrite/genética , Osteoartrite/metabolismoRESUMO
Osteoarthritis (OA) is a prevalent degenerative disease of the elderly. The NRF2 antioxidant system plays a critical role in maintaining redox balance. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant. This research aimed to determine whether MitoQ alleviated OA and the role of the NRF2/Parkin axis in MitoQ-mediated protective effects. In interleukin (IL)-1ß-induced OA chondrocytes, MitoQ activated the NRF2 pathway, reducing extracellular matrix (ECM) degradation and inflammation. MitoQ also increased glutathione peroxidase 4 (GPX4) expression, leading to decreased levels of reactive oxygen species (ROS) and lipid ROS. Silencing NRF2 weakened MitoQ's protective effects, while knockdown of Parkin upregulated the NRF2 pathway, inhibiting OA progression. Intra-articular injection of MitoQ mitigated cartilage destruction in destabilized medial meniscus (DMM)-induced OA mice. Our study demonstrates that MitoQ maintains cartilage homeostasis in vivo and in vitro through the NRF2/Parkin axis. We supplemented the negative feedback regulation mechanism between NRF2 and Parkin. These findings highlight the therapeutic potential of MitoQ for OA treatment.
RESUMO
Osteoarthritis (OA) is a multifactorial and increasingly prevalent degenerative disease that affects the whole joint. The pathogenesis of OA is poorly understood and there is a lack of therapeutic interventions to reverse the pathological process of this disease. Accumulating studies have shown that the overproduction of reactive oxygen species (ROS) and ROS-induced lipid peroxidation are involved in the pathogenesis of OA. 4-Hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) have received considerable attention for their role in cartilage degeneration and subchondral bone remodeling during OA development. Ferroptosis is a form of cell death characterized by a lack of control of membrane lipid peroxidation and recent studies have suggested that chondrocyte ferroptosis contributes to OA progression. In this review, we aim to discuss lipid peroxidation-derived 4-HNE and MDA in the progression of OA. In addition, the therapeutic potential for OA by controlling the accumulation of lipid peroxidation and inhibiting chondrocyte ferroptosis are discussed.
RESUMO
Osteoarthritis (OA) is an age-related disease, characterized by cartilage degeneration. The pathogenesis of OA is complicated and the current therapeutic approaches for OA are limited. Cartilage, an integral part of the skeletal system composed of chondrocytes, is essential for skeletal development, tissue patterning, and maintaining the normal activity of joints. The development, homeostasis and degeneration of cartilage are tightly associated with OA. Over the past decade, accumulating evidence indicates that Hippo/YAP is a vital biochemical signalling pathway that strictly governs tissue development and homeostasis. The joint tissues, especially for cartilage, are sensitive to changes of Hippo/YAP signalling. In this review, we summarize the role of Hippo/YAP signalling in cartilage and discuss its involvement in OA progression from points of cartilage degradation, subchondral bone remodeling, and synovial alteration. We also highlight the potential therapeutic implications of Hippo/YAP signalling and further discuss current limitations and controversy on Hippo/YAP-based application for OA treatment.
Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem/metabolismo , Osteoartrite/metabolismo , Condrócitos/metabolismo , Transdução de Sinais , Cartilagem Articular/metabolismoRESUMO
[This corrects the article DOI: 10.3389/fphar.2022.791376.].
RESUMO
Osteoarthritis (OA) is an age-related disease characterized by cartilage degeneration. TNFR1-associated death domain protein (TRADD) is a key upstream molecule of TNF-α signals but its role in OA pathogenesis is unknown. This study aimed to verify that whether inhibition of TRADD could protect against chondrocyte necroptosis and OA, and further elucidate the underlying mechanism. We demonstrated that TNF-α-related OA-like phenotypes including inflammation response, extracellular matrix degradation, apoptosis, and necroptosis in chondrocytes were inhibited by TRADD deficiency. Furthermore, TRADD interacted with TRAF2 and knockdown of TRADD suppressed the activation of RIPK1-TAK1-NF-κB signals and restored impaired autophagy. ICCB-19, the selective inhibitor of TRADD, also attenuated necroptosis in chondrocytes. Mechanismly, ICCB-19 blocked the phosphorylation of TAK1-NF-κB signals and restored impaired autophagy, whereas inhibiting autophagic process with 3-Methyladenine compromised these effects of ICCB-19. The in vivo study showed that the intra-articular injection of ICCB-19 rescued the expression of collagen alpha-1(II) chain and LC3, and mitigated the cartilage degeneration of OA mice. This study demonstrates that TRADD mediates TNF-α-induced necroptosis and OA-like phenotypes of chondrocytes and suggests that ICCB-19 suppresses chondrocyte damage and cartilage degeneration by inhibiting TNF-α-TRADD-mediated signals and dysregulation of autophagy in chondrocytes. ICCB-19 may serve as an important option for OA therapy.
RESUMO
Objective: To investigate the role of gut microbiota and metabolites in POCD in elderly orthopedic patients, and screen the preoperative diagnostic indicators of gut microbiota in elderly POCD. Method: 40 elderly patients undergoing orthopedic surgery were enrolled and divided into Control group and POCD group following neuropsychological assessments. Gut microbiota was determined by 16S rRNA MiSeq sequencing, and metabolomics of GC-MS and LC-MS was used to screen the differential metabolites. We then analyzed the pathways enriched by metabolites. Result: There was no difference in alpha or beta diversity between Control group and POCD group. There were significant differences in 39 ASV and 20 genera bacterium in the relative abundance. Significant diagnostic efficiency analyzed by the ROC curves were found in 6 genera bacterium. Differential metabolites in the two groups including acetic acid, arachidic acid, pyrophosphate etc. were screened out and enriched to certain metabolic pathways which impacted the cognition function profoundly. Conclusion: Gut microbiota disorders exist preoperatively in the elderly POCD patients, by which there could be a chance to predict the susceptible population. Clinical Trial Registration: [http://www.chictr.org.cn/edit.aspx?pid=133843&htm=4], identifier [ChiCTR2100051162].
RESUMO
Interruption of iron homeostasis is correlated with cell ferroptosis and degenerative diseases. Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy has been reported as a vital mechanism to control cellular iron levels, but its impact on osteoarthritis (OA) pathology and the underline mechanism are unknown. Herein we aimed to investigate the role and regulatory mechanism of NCOA4 in chondrocyte ferroptosis and OA pathogenesis. We demonstrated that NCOA4 was highly expressed in cartilage of patients with OA, aged mice, post-traumatic OA mice, and inflammatory chondrocytes. Importantly, Ncoa4 knockdown inhibited IL-1ß-induced chondrocyte ferroptosis and extracellular matrix degradation. Contrarily, overexpression of NCOA4 promoted chondrocyte ferroptosis and the delivery of Ncoa4 adeno-associated virus 9 into knee joint of mice aggravated post-traumatic OA. Mechanistic study revealed that NCOA4 was upregulated in a JNK-JUN signaling-dependent manner in which JUN could directly bind to the promoter of Ncoa4 and initial the transcription of Ncoa4. NCOA4 could interact with ferritin and increase autophagic degradation of ferritin and iron levels, which caused chondrocyte ferroptosis and extracellular matrix degradation. In addition, inhibition of JNK-JUN-NCOA4 axis by SP600125, a specific inhibitor of JNK, attenuated development of post-traumatic OA. This work highlights the role of JNK-JUN-NCOA4 axis and ferritinophagy in chondrocyte ferroptosis and OA pathogenesis, suggesting this axis as a potential target for OA treatment.
Assuntos
Ferroptose , Osteoartrite , Animais , Camundongos , Condrócitos/metabolismo , Ferroptose/genética , Osteoartrite/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Fatores de Transcrição/metabolismo , Ferro/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismoRESUMO
Background: The incidence of intervertebral disc degeneration (IVDD) is a common degenerative disease with inflammation, decreased autophagy, and progression of fibrosis as its possible pathogenesis. Physalin A (PA) is a widely studied anti-inflammatory drug. However, its therapeutic effects on IVDD remain unexplored. Therefore, we aimed to explore the therapeutic potential of PA in IVDD progression. Materials and methods: In vivo, we investigated PA bioactivity using a puncture-induced IVDD rat model. IVDD signals and height changes were detected using X-ray, micro-CT, and MRI, and structural and molecular lesions using histological staining and immunohistochemistry of intervertebral disc sections. In vivo, interleukin-1 beta (IL-1ß) and TGF-ß1 were employed to establish inflammation fibrotic nucleus pulposus (NP) cells. The PA effect duration, concentration, influence pathways, and pathological changes in IVDD treatment were elucidated using western blotting, real-time PCR, and immunofluorescence. Results: PA exerted significant effects on IVDD remission due to anti-inflammation, fibrosis reduction, and autophagy enhancement. In vitro, PA improved inflammation by blocking the NF-κB and MAPK pathways, whereas it promoted autophagy via the PI3K/AKT/mTOR pathway and affected fibrotic progression by regulating the SMAD2/3 pathway. Moreover, PA improved the disc degeneration process in IVDD model. Conclusions: PA exhibited significant anti-inflammatory and anti-fibrotic effects and improved autophagy in vivo and in vitro IVDD models, thus effectively relieving IVDD progression, indicating it is a promising agent for IVDD treatment. The translational potential of this article: This study successfully reveals that PA, a natural bioactive withanolide, effectively relieved IVDD progression via inflammation inhibition, fibrosis reduction, and autophagy enhancement, indicating it is a promising agent for IVDD treatment.