Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(33): e2401269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38687141

RESUMO

Structural design of 2D conjugated porous organic polymer films (2D CPOPs), by tuning linkage chemistries and pore sizes, provides great adaptability for various applications, including membrane separation. Here, four free-standing 2D CPOP films of imine- or hydrazone-linked polymers (ILP/HLP) in combination with benzene (B-ILP/HLP) and triphenylbenzene (TPB-ILP/HLP) aromatic cores are synthesized. The anisotropic disordered films, composed of polymeric layered structures, can be exfoliated into ultrathin 2D-nanosheets with layer-dependent electrical properties. The bulk CPOP films exhibit structure-dependent optical properties, triboelectric nanogenerator output, and robust mechanical properties, rivaling previously reported 2D polymers and porous materials. The exfoliation energies of the 2D CPOPs and their mechanical behavior at the molecular level are investigated using density function theory (DFT) and molecular dynamics (MD) simulations, respectively. Exploiting the structural tunability, the comparative organic solvent nanofiltration (OSN) performance of six membranes having different pore sizes and linkages to yield valuable trends in molecular weight selectivity is investigated. Interestingly, the OSN performances follow the predicted transport modeling values based on theoretical pore size calculations, signifying the existence of permanent porosity in these materials. The membranes exhibit excellent stability in organic solvents at high pressures devoid of any structural deformations, revealing their potential in practical OSN applications.

2.
ACS Appl Mater Interfaces ; 16(2): 2726-2739, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170672

RESUMO

Two-dimensional (2D) films of conjugated porous organic polymers (C-POPs) can translate the rich in-plane functionalities of conjugated frameworks into diverse optical and electronic applications while addressing the processability issues of their crystalline analogs for adaptable device architectures. However, the lack of facile single-step synthetic routes to obtain large-area high-quality films of 2D-C-POPs has limited their application possibilities so far. Here, we report the synthesis of four mechanically robust imine-linked 2D-C-POP free-standing films using a single-step fast condensation route that is scalable and tunable. The rigid covalently bonded 2D structures of the C-POP films offer high stability for volatile gas sensing in harsh environments while simultaneously enhancing site accessibility for gas molecules due to mesoporosity by structural design. Structurally, all films were composed of exfoliable layers of 2D polymeric nanosheets (NSs) that displayed anisotropy from disordered stacking, evinced by out-of-plane birefringent properties. The tunable in-plane conjugation, different nitrogen centers, and porous structures allow the films to act as ultraresponsive colorimetric sensors for acid sensing via reversible imine bond protonation. All the films could detect hydrogen chloride (HCl) gas down to 0.05 ppm, far exceeding the Occupational Safety and Health Administration's permissible exposure limit of 5 ppm with fast response time and good recyclability. Computational insights elucidated the effect of conjugation and tertiary nitrogen in the structures on the sensitivity and response time of the films. Furthermore, we exploited the exfoliated large 2D NSs and anisotropic optoelectronic properties of the films to adapt them into micro-optical and triboelectric devices to demonstrate their real-time sensing capabilities.

3.
Nat Commun ; 14(1): 7168, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935672

RESUMO

Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.

4.
iScience ; 25(6): 104373, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620419

RESUMO

Two-dimensional (2D) DNA origami that is capable of self-assembling into complex 2D and 3D geometries pave the way for a bottom-up synthesis for various applications in nano/biotechnology. Here, we directly visualized the aqueous structure of 2D DNA origami cross-tiles and their assemblies using cryogenic electron microscopy. We uncovered flexible arms in cross-tile monomers and designated inter-tile folding. In addition, we observed the formation of clusters and stacks of DNA cross-tiles in solution, which could potentially affect the interaction and assembly of DNA origami. Finally, we quantitatively evaluated the flexibility of DNA origami in solution using finite element analysis. Our discovery has laid the foundation for investigating the dynamic structures of 2D DNA origami assemblies in solution, providing insights regarding the self-assembly and self-replication mechanisms of 2D DNA origami.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA