Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.550
Filtrar
1.
Nature ; 629(8011): 341-347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720041

RESUMO

Ordered layered structures serve as essential components in lithium (Li)-ion cathodes1-3. However, on charging, the inherently delicate Li-deficient frameworks become vulnerable to lattice strain and structural and/or chemo-mechanical degradation, resulting in rapid capacity deterioration and thus short battery life2,4. Here we report an approach that addresses these issues using the integration of chemical short-range disorder (CSRD) into oxide cathodes, which involves the localized distribution of elements in a crystalline lattice over spatial dimensions, spanning a few nearest-neighbour spacings. This is guided by fundamental principles of structural chemistry and achieved through an improved ceramic synthesis process. To demonstrate its viability, we showcase how the introduction of CSRD substantially affects the crystal structure of layered Li cobalt oxide cathodes. This is manifested in the transition metal environment and its interactions with oxygen, effectively preventing detrimental sliding of crystal slabs and structural deterioration during Li removal. Meanwhile, it affects the electronic structure, leading to improved electronic conductivity. These attributes are highly beneficial for Li-ion storage capabilities, markedly improving cycle life and rate capability. Moreover, we find that CSRD can be introduced in additional layered oxide materials through improved chemical co-doping, further illustrating its potential to enhance structural and electrochemical stability. These findings open up new avenues for the design of oxide cathodes, offering insights into the effects of CSRD on the crystal and electronic structure of advanced functional materials.

2.
Small ; : e2401100, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721947

RESUMO

The increasing need for energy storage devices with high energy density has led to significant interest in Li-metal batteries (LMBs). However, the use of commercial electrolytes in LMBs is problematic due to their flammability, inadequate performance at low temperatures, and tendency to promote the growth of lithium dendrites and other flaws. This study introduces a localized high-concentration electrolyte (LHCE) that addresses these issues by employing non-flammable electrolyte components and incorporating carefully designed additives to enhance flame retardancy and low-temperature performance. By incorporating additives to optimize the electrolyte, it is possible to attain inorganic-dominated solid electrolyte interphases on both the cathode and anode. This achievement results in a uniform deposition of lithium, as well as the suppression of electrolyte decomposition and cathode deterioration. Consequently, this LHCE achieve over 300 stable cycles for both LiNi0.9Mn0.05Co0.05O2||Li cells and LiCoO2||Li cells, as well as 50 cycles for LiNi0.8Mn0.1Co0.1O2 (NCM811||Li) pouch cells. Furthermore, NCM811||Li cells maintain 84% discharge capacity at -20 °C, in comparison to the capacity at room temperature. The utilization of this electrolyte presents novel perspectives for the safe implementation of LMBs.

4.
Asian J Surg ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729880
5.
Int J STD AIDS ; : 9564624241252457, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733263

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV) infection has become a major contributor to the global burden of disease. Globally, the number of cases of HIV continues to increase. Electronic health (eHealth) interventions have emerged as promising tools to support disease self-management among people living with HIV. The purpose of this umbrella review is to systematically evaluate and summarize the evidence and results of published systematic reviews and meta-analyses on the effectiveness of eHealth interventions for HIV prevention, testing and management. METHODS: PubMed, Embase and the Cochrane Library were searched for reviews. The methodological quality of the included studies was assessed using AMSTAR-2. RESULTS: A total of 22 systematic reviews were included. The methodological quality of the reviews was low or critically low. EHealth interventions range from Internet, computer, or mobile interventions to websites, programs, applications, email, video, games, telemedicine, texting, and social media, or a combination of them. The majority of the reviews showed evidence of effectiveness (including increased participation in HIV management behaviours, successfully changed HIV testing behaviours, and reduced risk behaviours). EHealth interventions were effective in the short term. CONCLUSIONS: Ehealth interventions have the potential to improve HIV prevention, HIV testing and disease management. Due to the limitations of the low methodological quality of the currently available systematic reviews, more high-quality evidence is needed to develop clear and robust recommendations.

6.
Asian J Surg ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734559
7.
PLoS One ; 19(5): e0301866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739602

RESUMO

We use AlphaFold2 (AF2) to model the monomer and dimer structures of an intrinsically disordered protein (IDP), Nvjp-1, assisted by molecular dynamics (MD) simulations. We observe relatively rigid dimeric structures of Nvjp-1 when compared with the monomer structures. We suggest that protein conformations from multiple AF2 models and those from MD trajectories exhibit a coherent trend: the conformations of an IDP are deviated from each other and the conformations of a well-folded protein are consistent with each other. We use a residue-residue interaction network (RIN) derived from the contact map which show that the residue-residue interactions in Nvjp-1 are mainly transient; however, those in a well-folded protein are mainly persistent. Despite the variation in 3D shapes, we show that the AF2 models of both disordered and ordered proteins exhibit highly consistent profiles of the pLDDT (predicted local distance difference test) scores. These results indicate a potential protocol to justify the IDPs based on multiple AF2 models and MD simulations.


Assuntos
Proteínas Intrinsicamente Desordenadas , Simulação de Dinâmica Molecular , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica
8.
Artigo em Inglês | MEDLINE | ID: mdl-38767367

RESUMO

This study compared the biomechanical characteristics of proximal femur bionic nail (PFBN) and proximal femoral nail antirotation (PFNA) in treating osteoporotic femoral intertrochanteric fractures using finite element analysis. Under similar bone density, the PFBN outperforms the PFNA in maximum femoral displacement, internal fixation displacement, stress distribution in the femoral head and internal fixation components, and femoral neck varus angle. As the bone density decreases, the PFBN's biomechanical advantages over PFNA become more pronounced. This finding suggests that the PFBN is superior for treating osteoporotic intertrochanteric femoral fractures.

9.
Med Phys ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767470

RESUMO

BACKGROUND: Resting-state functional magnetic resonance imaging (rs-fMRI) technology and the complex network theory can be used to elucidate the underlying mechanisms of brain diseases. The successful application of functional brain hypernetworks provides new perspectives for the diagnosis and evaluation of clinical brain diseases; however, many studies have not assessed the attribute information of hyperedges and could not retain the high-order topology of hypergraphs. In addition, the study of multi-scale and multi-layered organizational properties of the human brain can provide richer and more accurate data features for classification models of depression. PURPOSE: This work aims to establish a more accurate classification framework for the diagnosis of major depressive disorder (MDD) using the high-order line graph algorithm. And accuracy, sensitivity, specificity, precision, F1 score are used to validate its classification performance. METHODS: Based on rs-fMRI data from 38 MDD subjects and 28 controls, we constructed a human brain hypernetwork and introduced a line graph model, followed by the construction of a high-order line graph model. The topological properties under each order line graph were calculated to measure the classification performance of the model. Finally, intergroup features that showed significant differences under each order line graph model were fused, and a support vector machine classifier was constructed using multi-kernel learning. The Kolmogorov-Smirnov nonparametric permutation test was used as the feature selection method and the classification performance was measured with the leave-one-out cross-validation method. RESULTS: The high-order line graph achieved a better classification performance compared with other traditional hypernetworks (accuracy = 92.42%, sensitivity = 92.86%, specificity = 92.11%, precision = 89.66%, F1 = 91.23%). Furthermore, the brain regions found in the present study have been previously shown to be associated with the pathology of depression. CONCLUSIONS: This work validated the classification model based on the high-order line graph, which can better express the topological features of the hypernetwork by comprehensively considering the hyperedge information under different connection strengths, thereby significantly improving the classification accuracy of MDD. Therefore, this method has potential for use in the clinical diagnosis of MDD.

10.
Acta Neuropathol Commun ; 12(1): 78, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769536

RESUMO

Neurologic Rosai-Dorfman disease (RDD) is a rare type of non-Langerhans cell histiocytosis that affects the central nervous system. Most neurologic RDDs grow like meningiomas, have clear boundaries, and can be completely resected. However, a few RDDs are invasive and aggressive, and no effective treatment options are available because the molecular mechanisms involved remain unknown. Here, we report a case of deadly and glucocorticoid-resistant neurologic RDD and explore its possible pathogenic mechanisms via single-cell RNA sequencing. First, we identified two distinct but evolutionarily related histiocyte subpopulations (the C1Q+ and SPP1+ histiocytes) that accumulated in the biopsy sample. The expression of genes in the KRAS signaling pathway was upregulated, indicating gain-of-function of KRAS mutations. The C1Q+ and SPP1+ histiocytes were highly differentiated and arrested in the G1 phase, excluding the idea that RDD is a lympho-histio-proliferative disorder. Second, although C1Q+ histiocytes were the primary RDD cell type, SPP1+ histiocytes highly expressed several severe inflammation-related and invasive factors, such as WNT5A, IL-6, and MMP12, suggesting that SPP1+ histiocytes plays a central role in driving the progression of this disease. Third, oligodendrocytes were found to be the prominent cell type that initiates RDD via MIF and may resist glucocorticoid treatment via the MDK and PTN signaling pathways. In summary, in this case, we report a rare presentation of neurologic RDD and provided new insight into the pathogenic mechanisms of progressive neurologic RDD. This study will also offer evidence for developing precision therapies targeting this complex disease.


Assuntos
Histiocitose Sinusal , Análise de Célula Única , Humanos , Masculino , Histiócitos/patologia , Histiocitose Sinusal/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Pessoa de Meia-Idade
11.
mBio ; : e0064024, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727246

RESUMO

Interleukin-18 binding protein (IL-18BP), a natural regulator molecule of the pro-inflammatory cytokine interleukin-18 (IL-18), plays an important role in regulating the expression of the cellular immunity factor interferon-γ (IFN-γ). In a previous RNA-seq analysis of porcine alveolar macrophages (PAM) infected with the TIM and TJ strains of porcine reproductive and respiratory syndrome virus (PRRSV), we unexpectedly found that the mRNA expression of porcine interleukin 18-binding protein (pIL-18BP) in PAM cells infected with the TJM strain was significantly higher than that infected with the TJ strain. Studies have shown that human interleukin-18 binding protein (hIL-18bp) plays an important role in regulating cellular immunity in the course of the disease. However, there is a research gap on pIL-18BP. At the same time, PRRSV infection in pigs triggers weak cellular immune response problems. To explore the expression and the role of pIL-18BP in the cellular immune response induced by PRRSV, we strived to acquire the pIL-18BP gene from PAM or peripheral blood mononuclear cell (PBMC) with RT-PCR and sequencing. Furthermore, pIL-18BP and pIL-18 were both expressed prokaryotically and eukaryotically. The colocalization and interaction based on recombinant pIL-18BP and pIL-18 on cells were confirmed in vitro. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in pigs with different PRRSV infection states to interpret the biological function of pIL-18BP in vivo. The results showed there were five shear mutants of pIL-18BP. The mutant with the longest coding region was selected for subsequent functional validation. First, it was demonstrated that TJM-induced pIL-18BP mRNA expression was higher than that of TJ. A direct interaction between pIL-18BP and pIL-18 was confirmed through fluorescence colocalization, bimolecular fluorescent complimentary (BIFC), and co-immunoprecipitation (CO-IP). pIL-18BP also can regulate pIFN-γ mRNA expression. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in different PRRSV infection states. Surprisingly, both mRNA and protein expression of pIL-18 were suppressed. These findings fill the gap in understanding the roles played by pIL-18BP in PRRSV infection and provide a foundation for further research.IMPORTANCEPRRSV-infected pigs elicit a weak cellular immune response and the mechanisms of cellular immune regulation induced by PRRSV have not yet been fully elucidated. In this study, we investigated the role of pIL-18BP in PRRSV-induced immune response referring to the regulation of human IL-18BP to human interferon-gamma (hIFN-γ). This is expected to be used as a method to enhance the cellular immune response induced by the PRRSV vaccine. Here, we mined five transcripts of the pIL-18BP gene and demonstrated that it interacts with pIL-18 and regulates pIFN-γ mRNA expression. Surprisingly, we also found that both mRNA and protein expression of pIL-18 were suppressed under different PRRSV strains of infection status. These results have led to a renewed understanding of the roles of pIL-18BP and pIL-18 in cellular immunity induced by PRRSV infection, which has important implications for the prevention and control of PRRS.

12.
Theranostics ; 14(7): 2881-2896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773977

RESUMO

Methamphetamine (METH) withdrawal anxiety symptom and relapse have been significant challenges for clinical practice, however, the underlying neuronal basis remains unclear. Our recent research has identified a specific subpopulation of choline acetyltransferase (ChAT+) neurons localized in the external lateral portion of parabrachial nucleus (eLPBChAT), which modulates METH primed-reinstatement of conditioned place preference (CPP). Here, the anatomical structures and functional roles of eLPBChAT projections in METH withdrawal anxiety and primed reinstatement were further explored. Methods: In the present study, a multifaceted approach was employed to dissect the LPBChAT+ projections in male mice, including anterograde and retrograde tracing, acetylcholine (Ach) indicator combined with fiber photometry recording, photogenetic and chemogenetic regulation, as well as electrophysiological recording. METH withdrawal anxiety-like behaviors and METH-primed reinstatement of conditioned place preference (CPP) were assessed in male mice. Results: We identified that eLPBChAT send projections to PKCδ-positive (PKCδ+) neurons in lateral portion of central nucleus of amygdala (lCeAPKCδ) and oval portion of bed nucleus of the stria terminalis (ovBNSTPKCδ), forming eLPBChAT-lCeAPKCδ and eLPBChAT-ovBNSTPKCδ pathways. At least in part, the eLPBChAT neurons positively innervate lCeAPKCδ neurons and ovBNSTPKCδ neurons through regulating synaptic elements of presynaptic Ach release and postsynaptic nicotinic acetylcholine receptors (nAChRs). METH withdrawal anxiety and METH-primed reinstatement of CPP respectively recruit eLPBChAT-lCeAPKCδ pathway and eLPBChAT-ovBNSTPKCδ pathway in male mice. Conclusion: Our findings put new insights into the complex neural networks, especially focusing on the eLPBChAT projections. The eLPBChAT is a critical node in the neural networks governing METH withdrawal anxiety and primed-reinstatement of CPP through its projections to the lCeAPKCδ and ovBNSTPKCδ, respectively.


Assuntos
Ansiedade , Metanfetamina , Camundongos Endogâmicos C57BL , Síndrome de Abstinência a Substâncias , Animais , Metanfetamina/efeitos adversos , Masculino , Camundongos , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia , Ansiedade/metabolismo , Neurônios/metabolismo , Colina O-Acetiltransferase/metabolismo , Núcleos Septais/metabolismo , Comportamento Animal/efeitos dos fármacos
13.
Cell Signal ; 120: 111225, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735506

RESUMO

Ubiquitin-specific proteases (USPs) have been proved to play important roles in the progression of diabetic retinopathy. In this study, we explored the role of USP5 and its possible mechanisms in diabetic retinopathy development. Cell proliferation, apoptosis, inflammation and oxidative stress were determined using CCK-8 assay, EdU staining assay, flow cytometry, and ELISA, respectively. The mRNA and protein expression of ROBO4 and USP5 were measured through RT-qPCR and western blot, respectively. Co-IP and deubiquitination assay were conducted to evaluate the interaction between ROBO4 and USP5. The results showed that high glucose (HG) stimulation significantly led to HRPE cell damage as described by suppressing proliferation, and promoting oxidative stress, inflammation and apoptosis. ROBO4 was markedly increased in diabetic retinopathy plasma samples and HG-triggered HRPE cells. Depletion of ROBO4 could alleviate HG-caused HRPE cell damage. USP5 was also significantly elevated in diabetic retinopathy plasma samples and HG-triggered HRPE cells. USP5 overexpression aggravated HG-induced HRPE cell damage. USP5 stabilized ROBO4 through deubiquitination. Moreover, USP5 knockdown decreased ROBO4 expression to mitigate HG-triggered cell damage in HRPE cells. USP5 stabilized ROBO4 via deubiquitination to repress cell proliferation, and facilitate inflammation, cell apoptosis and oxidative stress in HG-treated HRPE cells, thereby promoting the development of diabetic retinopathy.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38753419

RESUMO

Layered O3-type oxides are one of the most promising cathode materials for Na-ion batteries owing to their high capacity and straightforward synthesis. However, these materials often experience irreversible structure transitions at elevated cutoff voltages, resulting in compromised cycling stability and rate performance. To address such issues, understanding the interplay of the composition, structure, and properties is crucial. Here, we successfully introduced a P-type characteristic into the O3-type layered structure, achieving a P3-dominated solid-solution phase transition upon cycling. This modification facilitated a reversible transformation of the O3-P3-P3' structure with minimal and gradual volume changes. Consequently, the Na0.75Ni0.25Cu0.10Fe0.05Mn0.15Ti0.45O2 cathode exhibited a specific capacity of approximately 113 mAh/g, coupled with exceptional cycling performance (maintaining over 70% capacity retention after 900 cycles). These findings shed light on the composition-structure-property relationships of Na-ion layered oxides, offering valuable insights for the advancement of Na-ion batteries.

15.
Environ Sci Technol ; 58(20): 8846-8856, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728579

RESUMO

Advanced oxidation process (AOP) wet scrubber is a powerful and clean technology for organic pollutant treatment but still presents great challenges in removing the highly toxic and hydrophobic volatile organic compounds (VOCs). Herein, we elaborately designed a bifunctional cobalt sulfide (CoS2)/activated carbon (AC) catalyst to activate peroxymonosulfate (PMS) for efficient toxic VOC removal in an AOP wet scrubber. By combining the excellent VOC adsorption capacity of AC with the highly efficient PMS activation activity of CoS2, CoS2/AC can rapidly capture VOCs from the gas phase to proceed with the SO4•- and HO• radical-induced oxidation reaction. More than 90% of aromatic VOCs were removed over a wide pH range (3-11) with low Co ion leaching (0.19 mg/L). The electron-rich sulfur vacancies and low-valence Co species were the main active sites for PMS activation. SO4•- was mainly responsible for the initial oxidation of VOCs, while HO• and O2 acted in the subsequent ring-opening and mineralization processes of intermediates. No gaseous intermediates from VOC oxidation were detected, and the highly toxic liquid intermediates like benzene were also greatly decreased, thus effectively reducing the health toxicity associated with byproduct emissions. This work provided a comprehensive understanding of the deep oxidation of VOCs via AOP wet scrubber, significantly accelerating its application in environmental remediation.


Assuntos
Oxirredução , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Catálise , Carvão Vegetal/química , Cobalto/química , Adsorção , Carbono/química
16.
J Periodontol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742582

RESUMO

BACKGROUND: The aim of this retrospective study was to investigate the risk of tooth loss for teeth adjacent and nonadjacent to dental implants. METHODS: A total of 787 patients with an average follow-up of 57.1 months were examined to define the tooth loss, cumulative survival rate, and odds ratio (OR) for teeth adjacent versus nonadjacent to implants. A multivariate logistic regression was employed to assess the association between dental history and various recorded etiologies of tooth loss among teeth adjacent to implants. RESULTS: The incidence of tooth loss for teeth adjacent to implants was 8.1% at the tooth level and 15.1% at the patient level, while 0.7% and 9.5% at the tooth and patientlevel for teeth nonadjacent to implants. The 10-year cumulative survival rate for teeth adjacent to implants was 89.2%, and the primary etiology of tooth loss was root fracture (45.2%). The risk of tooth loss among teeth adjacent versus nonadjacent to implants was significantly higher (OR 13.15). Among teeth adjacent to implants, root canal-treated teeth had a significantly higher risk of tooth loss due to root fracture (OR 7.72), a history of existing restoration significantly increased the risk of tooth loss due to caries (OR 3.05), and a history of periodontitis significantly increased the risk of tooth loss due to periodontitis (OR 38.24). CONCLUSION: The present study demonstrated that after patients received dental implant treatment, teeth adjacent to implants showed a 13.2-fold higher risk of tooth loss compared to teeth nonadjacent to implants, with the primary etiology being root fracture.

17.
J Mol Med (Berl) ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739269

RESUMO

Immune checkpoint inhibitors (ICIs) have achieved impressive success in lung adenocarcinoma (LUAD). However, the response to ICIs varies among patients, and predictive biomarkers are urgently needed. PCDH11X is frequently mutated in LUAD, while its role in ICI treatment is unclear. In this study, we curated genomic and clinical data of 151 LUAD patients receiving ICIs from three independent cohorts. Relations between PCDH11X and treatment outcomes of ICIs were examined. A melanoma cohort collected from five published studies, a pan-cancer cohort, and non-ICI-treated TCGA-LUAD cohort were also examined to investigate whether PCDH11X mutation is a specific predictive biomarker for LUAD ICI treatment. Among the three ICI-treated LUAD cohorts, PCDH11X mutation (PCDH11X-MUT) was associated with better clinical response compared to wild-type PCDH11X (PCDH11X-WT). While in ICI-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and the non-ICI-treated TCGA-LUAD cohort, no significant differences in overall survival (OS) were observed between the PCDH11X-MUT and PCDH11X-WT groups. PCDH11X mutation was associated with increased PD-L1 expression, tumor mutation burden (TMB), neoantigen load, DNA damage repair (DDR) mutations, and hot tumor microenvironment in TCGA-LUAD cohort. Our findings suggested that the PCDH11X mutation might serve as a specific biomarker to predict the efficacy of ICIs for LUAD patients. Considering the relatively small sample size of ICI-treated cohorts, future research with larger cohorts and prospective clinical trials will be essential for validating and further exploring the role of PCDH11X mutation in the context of immunotherapy outcomes in LUAD. KEY MESSAGES: PCDH11X mutation is associated with better clinical response compared to wild type PCDH11X in three ICIs-treated LUAD cohorts. In ICIs-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and non-ICIs-treated TCGA-LUAD cohorts PCDH11X mutation is not associated with better clinical response, suggesting PCDH11X mutation might be a specific biomarker to predict the efficacy of ICIs treatment for LUAD patients. PCDH11X mutation is associated with increased PD-L1 expression, tumor mutation burden, and neoantigen load in TCGA-LUAD cohort. PCDH11X mutation is associated with hot tumor microenvironment in TCGA-LUAD cohort.

18.
Soft Matter ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775669

RESUMO

This comment critically evaluates the work of Dehaghani et al., who investigated the conformational behavior of catenated polymers under diverse solvent conditions using coarse-grained molecular dynamics simulations. While their study provides valuable insights into the scaling behavior of poly[n]catenane's radius of gyration in a good solvent, significant discrepancies arise, particularly concerning the reported θ-temperature trends. The validity of their methodology in determining θ-temperatures for linear and ring polymers is questioned, given observed disparities in chosen number of bead ranges that imply varying molecular weights. This comment underscores the need for a meticulous reassessment of the methodologies and interpretations presented in Dehaghani et al.'s study, emphasizing the importance of rigorous considerations in the investigation of the physical properties of catenated polymers.

19.
Mil Med Res ; 11(1): 20, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556884

RESUMO

BACKGROUND: Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury (TBI). However, the heterogeneity, multifunctionality, and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood. METHODS: Using the combined single-cell transcriptomics, metabolomics, and proteomics analysis from TBI patients and the TBI mouse model, we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests. We also characterized the underlying mechanisms both in vitro and in vivo through molecular simulations, signaling detections, gene expression regulation assessments [including dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays], primary cultures or co-cultures of neutrophils and oligodendrocytes, intracellular iron, and lipid hydroperoxide concentration measurements, as well as forkhead box protein O1 (FOXO1) conditional knockout mice. RESULTS: We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model. Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI, aggravating acute brain inflammatory damage and promoting late TBI-induced depression. In the acute stage, FOXO1 upregulated cytoplasmic Versican (VCAN) to interact with the apoptosis regulator B-cell lymphoma-2 (BCL-2)-associated X protein (BAX), suppressing the mitochondrial translocation of BAX, which mediated the antiapoptotic effect companied with enhancing interleukin-6 (IL-6) production of FOXO1high neutrophils. In the chronic stage, the "FOXO1-transferrin receptor (TFRC)" mechanism contributes to FOXO1high neutrophil ferroptosis, disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein, which contributes to the progression of late depression after TBI. CONCLUSIONS: FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI, which provides insight into the heterogeneity, reprogramming activity, and versatility of neutrophils in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Neutrófilos , Animais , Humanos , Camundongos , Proteína X Associada a bcl-2/metabolismo , Encéfalo , Lesões Encefálicas Traumáticas/complicações , Depressão , Proteína Forkhead Box O1/metabolismo , Ferro
20.
PLoS One ; 19(4): e0297695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568917

RESUMO

BACKGROUND: This study aims to study the possible action mechanism of T-cell immunoglobulin and mucin domain 3 (TIM3) on the migratory and invasive abilities of thyroid carcinoma (TC) cells. METHODS: GSE104005 and GSE138198 datasets were downloaded from the GEO database for identifying differentially expressed genes (DEGs). Functional enrichment analysis and protein-protein interaction (PPI) analysis were performed on the common DEGs in GSE104005 and GSE138198 datasets. Subsequently, in order to understand the effect of a common DEG (TIM3) on TC cells, we performed in vitro experiments using FRO cells. The migratory and invasive abilities of FRO cells were detected by wound scratch assay and Transwell assay. Proteins expression levels of the phosphorylated (p)-extracellular signal-regulated kinase (ERK)1/2, matrix metalloproteinase-2 (MMP-2) and MMP-9 were determined via Western blotting after ERK1/2 inhibition in TIM3-NC group and TIM3-mimic group. RESULTS: 316 common DEGs were identified in GSE104005 and GSE138198 datasets. These DEGs were involved in the biological process of ERK1 and ERK2 cascade. TIM3 was significantly up-regulated in TC. In vitro cell experiments showed that TIM3 could promote migration and invasion of TC cells. Moreover, TIM3 may affect the migration, invasive abilities of TC cells by activating the ERK1/2 pathway. CONCLUSION: The above results indicate that TIM3 may affect the migratory and invasive of TC cells by activating the ERK1/2 pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias da Glândula Tireoide , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Linhagem Celular Tumoral , Processos Neoplásicos , Neoplasias da Glândula Tireoide/genética , Movimento Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA