Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bone Res ; 12(1): 33, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811544

RESUMO

Wnt/ß-catenin signaling is critical for various cellular processes in multiple cell types, including osteoblast (OB) differentiation and function. Exactly how Wnt/ß-catenin signaling is regulated in OBs remain elusive. ATP6AP2, an accessory subunit of V-ATPase, plays important roles in multiple cell types/organs and multiple signaling pathways. However, little is known whether and how ATP6AP2 in OBs regulates Wnt/ß-catenin signaling and bone formation. Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions. Conditionally knocking out (CKO) ATP6AP2 in the OB-lineage cells (Atp6ap2Ocn-Cre) reduced trabecular, but not cortical, bone formation and bone mass. Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs, but not osteocytes. Additional in vitro and in vivo studies revealed impaired ß-catenin signaling in ATP6AP2-KO BMSCs and OBs, but not osteocytes, under both basal and Wnt stimulated conditions, although LRP5 was decreased in ATP6AP2-KO osteocytes, but not BMSCs. Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression of ß-catenin phosphorylation, but necessary for LRP6/ß-catenin and N-cadherin/ß-catenin protein complex distribution at the cell membrane, thus preventing their degradation. Expression of active ß-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs. Taken together, these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability, and thus regulating ß-catenin levels, demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/ß-catenin signaling and trabecular bone formation.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos Knockout , Osteoblastos , Osteogênese , ATPases Vacuolares Próton-Translocadoras , Via de Sinalização Wnt , beta Catenina , Animais , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , beta Catenina/genética , Osteoblastos/metabolismo , Osteogênese/fisiologia , Camundongos , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Transporte Proteico , Diferenciação Celular , Osteócitos/metabolismo , Receptor de Pró-Renina
2.
Heliyon ; 10(3): e25071, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318043

RESUMO

Based on the microscopic polycrystalline fatigue crack propagation (MPFCP) model, the MPFCP behaviours of GH4169 alloy under different micro-notch depths and lengths (constraints) were studied from aspects of MPFCP path, MPFCP rate and stress distribution. The influences of the initial crack angle on MPFCP behaviour were further explored. It was observed that the grain boundary, the grain size and the stress state were different during crack propagation under different constraints, resulting in different MPFCP paths. The MPFCP path was straighter under high constraints, and the MPFCP rate was related to the micro-notch size and the loading direction. The crack tip needed more stress accumulation at low constraints than under high constraints to ensure smooth MPFCP behaviour. The influence of the initial crack angle on the MPFCP path was mainly reflected in the grain interior where the initial crack was located. The initial crack angle had a greater influence on the MPFCP rate than on the MPFCP path.

3.
Aging (Albany NY) ; 15(22): 13059-13076, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37980168

RESUMO

BACKGROUND: Ubiquitin fold modifier 1 (UFM1) overexpression is associated with cancer cell proliferation, migration and invasion. However, the roles and pathways of UFM1 in oral squamous cell carcinoma (OSCC) has remained undefined. METHODS: The expression of UFM1 and the relationship between UFM1 expression and prognosis were investigated using data of OSCC patients from The Cancer Genome Atlas (TCGA) database. The UFM1 co-expressed genes, and the association between the UFM1 expression and immune cells and ubiquitination were explored. The effects of UFM1 expression on the growth and migration of OSCC cells were investigated by siRNA interference, Cell Counting Kit-8 (CCK-8), Transwell, Western blotting, and wound healing experiments. RESULTS: UFM1 was highly expressed in OSCC. UFM1 overexpression was associated with short overall survival, disease-specific survival, and progression-free interval, and was an adverse factor for prognosis in OSCC. UFM1-related nomograms were significantly associated with poor prognosis in OSCC patients. Decreased UFM1 expression could inhibit the proliferation, migration, and invasion of OSCC cells. UFM1 was associated with the immune cells (such as the Th17 cells, T helper cells, and cytotoxic cells) and ubiquitination. CONCLUSION: Elevated UFM1 expression was associated with poor prognosis, ubiquitination and immune infiltration in OSCC, and inhibition of UFM1 expression delayed OSCC progression, showing that UFM1 could be a biomarker for prognosis and treating OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Prognóstico , Proliferação de Células , Movimento Celular/genética , Proteínas
4.
Cell Death Dis ; 13(11): 952, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357367

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Notably, patients with AD often suffer from severe sarcopenia. However, their direct link and relationship remain poorly understood. Here, we generated a mouse line, TgAPPsweHSA, by crossing LSL (LoxP-STOP-LoxP)-APPswe with HSA-Cre mice, which express APPswe (Swedish mutant APP) selectively in skeletal muscles. Examining phenotypes in TgAPPsweHSA mice showed not only sarcopenia-like deficit, but also AD-relevant hippocampal inflammation, impairments in adult hippocampal neurogenesis and blood brain barrier (BBB), and depression-like behaviors. Further studies suggest that APPswe expression in skeletal muscles induces senescence and expressions of senescence-associated secretory phenotypes (SASPs), which include inflammatory cytokines and chemokines; but decreases growth factors, such as PDGF-BB and BDNF. These changes likely contribute to the systemic and hippocampal inflammation, deficits in neurogenesis and BBB, and depression-like behaviors, revealing a link of sarcopenia with AD, and uncovering an axis of muscular APPswe to brain in AD development.


Assuntos
Doença de Alzheimer , Sarcopenia , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Suécia , Encéfalo/metabolismo , Inflamação , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo
5.
Commun Biol ; 4(1): 1326, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824365

RESUMO

Patients with Alzheimer's disease (AD) often have osteoporosis or osteopenia. However, their direct link and relationship remain largely unclear. Previous studies have detected osteoporotic deficits in young adult Tg2576 and TgAPPsweOCN mice, which express APPswe (Swedish mutant) ubiquitously and selectively in osteoblast (OB)-lineage cells. This raises the question, whether osteoblastic APPswe contributes to AD development. Here, we provide evidence that TgAPPsweOCN mice also exhibit AD-relevant brain pathologies and behavior phenotypes. Some brain pathologies include age-dependent and regional-selective increases in glial activation and pro-inflammatory cytokines, which are accompanied by behavioral phenotypes such as anxiety, depression, and altered learning and memory. Further cellular studies suggest that APPswe, but not APPwt or APPlon (London mutant), in OB-lineage cells induces endoplasmic reticulum-stress driven senescence, driving systemic and cortex inflammation as well as behavioral changes in 6-month-old TgAPPsweOCN mice. These results therefore reveal an unrecognized function of osteoblastic APPswe to brain axis in AD development.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Encéfalo/fisiopatologia , Senescência Celular/genética , Fenótipo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ansiedade/genética , Citocinas/fisiologia , Depressão/genética , Humanos , Aprendizagem , Masculino , Memória , Camundongos , Camundongos Transgênicos , Mutação , Neuroglia/fisiologia , Osteoblastos
6.
Cell Biosci ; 11(1): 190, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740382

RESUMO

Patients with Parkinson's disease (PD) exhibit systemic deficits, including arthritis and osteoporosis-like symptoms. However, the questions, how the deficits in periphery organs or tissues occur in PD patients, and what are the relationship (s) of the periphery tissue deficits with the brain pathology (e.g., dopamine neuron loss), are at the beginning stage to be investigated. Notice that both PD and osteoporosis are the products of a complex interaction of genetic and environmental risk factors. Genetic mutations in numerous genes have been identified in patients either with recessive or autosomal dominant PD. Most of these PD risk genes are ubiquitously expressed; and many of them are involved in regulation of bone metabolism. Here, we review the functions of the PD risk genes in regulating bone remodeling and homeostasis. The knowledge gaps in our understanding of the bone-to-brain axis in PD development are also outlined.

7.
Bone Res ; 9(1): 31, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108442

RESUMO

Patients with Alzheimer's disease (AD) often have lower bone mass than healthy individuals. However, the mechanisms underlying this change remain elusive. Previously, we found that Tg2576 mice, an AD animal model that ubiquitously expresses Swedish mutant amyloid precursor protein (APPswe), shows osteoporotic changes, reduced bone formation, and increased bone resorption. To understand how bone deficits develop in Tg2576 mice, we used a multiplex antibody array to screen for serum proteins that are altered in Tg2576 mice and identified hepcidin, a master regulator of iron homeostasis. We further investigated hepcidin's function in bone homeostasis and found that hepcidin levels were increased not only in the serum but also in the liver, muscle, and osteoblast (OB) lineage cells in Tg2576 mice at both the mRNA and protein levels. We then generated mice selectively expressing hepcidin in hepatocytes or OB lineage cells, which showed trabecular bone loss and increased osteoclast (OC)-mediated bone resorption. Further cell studies suggested that hepcidin increased OC precursor proliferation and differentiation by downregulating ferroportin (FPN) expression and increasing intracellular iron levels. In OB lineage cells, APPswe enhanced hepcidin expression by inducing ER stress and increasing OC formation, in part through hepcidin. Together, these results suggest that increased hepcidin expression in hepatocytes and OB lineage cells in Tg2576 mice contributes to enhanced osteoclastogenesis and trabecular bone loss, identifying the hepcidin-FPN-iron axis as a potential therapeutic target to prevent AD-associated bone loss.

8.
PLoS Biol ; 18(6): e3000731, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479501

RESUMO

The nuclear lamina protein lamin A/C is a key component of the nuclear envelope. Mutations in the lamin A/C gene (LMNA) are identified in patients with various types of laminopathy-containing diseases, which have features of accelerated aging and osteoporosis. However, the underlying mechanisms for laminopathy-associated osteoporosis remain largely unclear. Here, we provide evidence that loss of lamin A/C in skeletal muscles, but not osteoblast (OB)-lineage cells, results in not only muscle aging-like deficit but also trabecular bone loss, a feature of osteoporosis. The latter is due in large part to elevated bone resorption. Further cellular studies show an increase of osteoclast (OC) differentiation in cocultures of bone marrow macrophages/monocytes (BMMs) and OBs after treatment with the conditioned medium (CM) from lamin A/C-deficient muscle cells. Antibody array screening analysis of the CM proteins identifies interleukin (IL)-6, whose expression is markedly increased in lamin A/C-deficient muscles. Inhibition of IL-6 by its blocking antibody in BMM-OB cocultures diminishes the increase of osteoclastogenesis. Knockout (KO) of IL-6 in muscle lamin A/C-KO mice diminishes the deficits in trabecular bone mass but not muscle. Further mechanistic studies reveal an elevation of cellular senescence marked by senescence-associated beta-galactosidase (SA-ß-gal), p16Ink4a, and p53 in lamin A/C-deficient muscles and C2C12 muscle cells, and the p16Ink4a may induce senescence-associated secretory phenotype (SASP) and IL-6 expression. Taken together, these results suggest a critical role for skeletal muscle lamin A/C to prevent cellular senescence, IL-6 expression, hyperosteoclastogenesis, and trabecular bone loss, uncovering a pathological mechanism underlying the link between muscle aging/senescence and osteoporosis.


Assuntos
Envelhecimento/patologia , Lamina Tipo A/deficiência , Músculo Esquelético/patologia , Osteoporose/patologia , Animais , Anticorpos Bloqueadores/farmacologia , Fenômenos Biomecânicos , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Diferenciação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteoporose/sangue , Fenótipo
9.
Bone Res ; 6: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872550

RESUMO

YAP (yes-associated protein) is a transcriptional factor that is negatively regulated by Hippo pathway, a conserved pathway for the development and size control of multiple organs. The exact function of YAP in bone homeostasis remains controversial. Here we provide evidence for YAP's function in promoting osteogenesis, suppressing adipogenesis, and thus maintaining bone homeostasis. YAP is selectively expressed in osteoblast (OB)-lineage cells. Conditionally knocking out Yap in the OB lineage in mice reduces cell proliferation and OB differentiation and increases adipocyte formation, resulting in a trabecular bone loss. Mechanistically, YAP interacts with ß-catenin and is necessary for maintenance of nuclear ß-catenin level and Wnt/ß-catenin signaling. Expression of ß-catenin in YAP-deficient BMSCs (bone marrow stromal cells) diminishes the osteogenesis deficit. These results thus identify YAP-ß-catenin as an important pathway for osteogenesis during adult bone remodeling and uncover a mechanism underlying YAP regulation of bone homeostasis.

10.
J Cell Biol ; 216(3): 761-778, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28193701

RESUMO

Bone homeostasis depends on the functional balance of osteoblasts (OBs) and osteoclasts (OCs). Lrp4 is a transmembrane protein that is mutated in patients with high bone mass. Loss of Lrp4 in OB-lineage cells increases bone mass by elevating bone formation by OBs and reducing bone resorption by OCs. However, it is unclear how Lrp4 deficiency in OBs impairs osteoclastogenesis. Here, we provide evidence that loss of Lrp4 in the OB lineage stabilizes the prorenin receptor (PRR) and increases PRR/V-ATPase-driven ATP release, thereby enhancing the production of the ATP derivative adenosine. Both pharmacological and genetic inhibition of adenosine-2A receptor (A2AR) in culture and Lrp4 mutant mice diminishes the osteoclastogenic deficit and reduces trabecular bone mass. Furthermore, elevated adenosine-A2AR signaling reduces receptor activator of nuclear factor κB (RANK)-mediated osteoclastogenesis. Collectively, these results identify a mechanism by which osteoblastic Lrp4 controls osteoclastogenesis, reveal a cross talk between A2AR and RANK signaling in osteoclastogenesis, and uncover an unrecognized pathophysiological mechanism of high-bone-mass disorders.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Receptor A2A de Adenosina/metabolismo , Células 3T3 , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem da Célula , Células HEK293 , Humanos , Camundongos , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA