Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Commun ; 15(1): 4180, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755148

RESUMO

Computational super-resolution methods, including conventional analytical algorithms and deep learning models, have substantially improved optical microscopy. Among them, supervised deep neural networks have demonstrated outstanding performance, however, demanding abundant high-quality training data, which are laborious and even impractical to acquire due to the high dynamics of living cells. Here, we develop zero-shot deconvolution networks (ZS-DeconvNet) that instantly enhance the resolution of microscope images by more than 1.5-fold over the diffraction limit with 10-fold lower fluorescence than ordinary super-resolution imaging conditions, in an unsupervised manner without the need for either ground truths or additional data acquisition. We demonstrate the versatile applicability of ZS-DeconvNet on multiple imaging modalities, including total internal reflection fluorescence microscopy, three-dimensional wide-field microscopy, confocal microscopy, two-photon microscopy, lattice light-sheet microscopy, and multimodal structured illumination microscopy, which enables multi-color, long-term, super-resolution 2D/3D imaging of subcellular bioprocesses from mitotic single cells to multicellular embryos of mouse and C. elegans.


Assuntos
Caenorhabditis elegans , Microscopia de Fluorescência , Animais , Caenorhabditis elegans/embriologia , Microscopia de Fluorescência/métodos , Camundongos , Imageamento Tridimensional/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo
2.
Research (Wash D C) ; 7: 0363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694198

RESUMO

Combined hyperlipidemia (CHL) manifests as elevated cholesterol and triglycerides, associated with fatty liver and cardiovascular diseases. Emerging evidence underscores the crucial role of the intestinal microbiota in metabolic disorders. However, the potential therapeutic viability of remodeling the intestinal microbiota in CHL remains uncertain. In this study, CHL was induced in low-density lipoprotein receptor-deficient (LDLR-/-) hamsters through an 8-week high-fat and high-cholesterol (HFHC) diet or a 4-month high-cholesterol (HC) diet. Placebo or antibiotics were administered through separate or cohousing approaches. Analysis through 16S rDNA sequencing revealed that intermittent antibiotic treatment and the cohousing approach effectively modulated the gut microbiota community without impacting its overall abundance in LDLR-/- hamsters exhibiting severe CHL. Antibiotic treatment mitigated HFHC diet-induced obesity, hyperglycemia, and hyperlipidemia, enhancing thermogenesis and alleviating nonalcoholic steatohepatitis (NASH), concurrently reducing atherosclerotic lesions in LDLR-/- hamsters. Metabolomic analysis revealed a favorable liver lipid metabolism profile. Increased levels of microbiota-derived metabolites, notably butyrate and glycylglycine, also ameliorated NASH and atherosclerosis in HFHC diet-fed LDLR-/- hamsters. Notably, antibiotics, butyrate, and glycylglycine treatment exhibited protective effects in LDLR-/- hamsters on an HC diet, aligning with outcomes observed in the HFHC diet scenario. Our findings highlight the efficacy of remodeling gut microbiota through antibiotic treatment and cohousing in improving obesity, NASH, and atherosclerosis associated with refractory CHL. Increased levels of beneficial microbiota-derived metabolites suggest a potential avenue for microbiome-mediated therapies in addressing CHL-associated diseases.

3.
Theranostics ; 14(5): 2036-2057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505614

RESUMO

Background: ApoA5 mainly synthesized and secreted by liver is a key modulator of lipoprotein lipase (LPL) activity and triglyceride-rich lipoproteins (TRLs). Although the role of ApoA5 in extrahepatic triglyceride (TG) metabolism in circulation has been well documented, the relationship between ApoA5 and nonalcoholic fatty liver disease (NAFLD) remains incompletely understood and the underlying molecular mechanism still needs to be elucidated. Methods: We used CRISPR/Cas9 gene editing to delete Apoa5 gene from Syrian golden hamster, a small rodent model replicating human metabolic features. Then, the ApoA5-deficient (ApoA5-/-) hamsters were used to investigate NAFLD with or without challenging a high fat diet (HFD). Results: ApoA5-/- hamsters exhibited hypertriglyceridemia (HTG) with markedly elevated TG levels at 2300 mg/dL and hepatic steatosis on a regular chow diet, accompanied with an increase in the expression levels of genes regulating lipolysis and small adipocytes in the adipose tissue. An HFD challenge predisposed ApoA5-/- hamsters to severe HTG (sHTG) and nonalcoholic steatohepatitis (NASH). Mechanistic studies in vitro and in vivo revealed that targeting ApoA5 disrupted NR1D1 mRNA stability in the HepG2 cells and the liver to reduce both mRNA and protein levels of NR1D1, respectively. Overexpression of human NR1D1 by adeno-associated virus 8 (AAV8) in the livers of ApoA5-/- hamsters significantly ameliorated fatty liver without affecting plasma lipid levels. Moreover, restoration of hepatic ApoA5 or activation of UCP1 in brown adipose tissue (BAT) by cold exposure or CL316243 administration could significantly correct sHTG and hepatic steatosis in ApoA5-/- hamsters. Conclusions: Our data demonstrate that HTG caused by ApoA5 deficiency in hamsters is sufficient to elicit hepatic steatosis and HFD aggravates NAFLD by reducing hepatic NR1D1 mRNA and protein levels, which provides a mechanistic link between ApoA5 and NAFLD and suggests the new insights into the potential therapeutic approaches for the treatment of HTG and the related disorders due to ApoA5 deficiency in the clinical trials in future.


Assuntos
Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Animais , Cricetinae , Humanos , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Hiperlipidemias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mesocricetus , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
4.
BMC Genomics ; 25(1): 24, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166626

RESUMO

BACKGROUND: Transforming growth factor ß (TGF-ß) superfamily genes can regulate various processes, especially in embryogenesis, adult development, and homeostasis. To understand the evolution and divergence patterns of the TGF-ß superfamily in scallops, genome-wide data from the Bay scallop (Argopecten irradians), the Zhikong scallop (Chlamys farreri) and the Yesso scallop (Mizuhopecten yessoensis) were systematically analysed using bioinformatics methods. RESULTS: Twelve members of the TGF-ß superfamily were identified for each scallop. The phylogenetic tree showed that these genes were grouped into 11 clusters, including BMPs, ADMP, NODAL, GDF, activin/inhibin and AMH. The number of exons and the conserved motif showed some differences between different clusters, while genes in the same cluster exhibited high similarity. Selective pressure analysis revealed that the TGF-ß superfamily in scallops was evolutionarily conserved. The spatiotemporal expression profiles suggested that different TGF-ß members have distinct functions. Several BMP-like and NODAL-like genes were highly expressed in early developmental stages, patterning the embryonic body plan. GDF8/11-like genes showed high expression in striated muscle and smooth muscle, suggesting that these genes may play a critical role in regulating muscle growth. Further analysis revealed a possible duplication of AMH, which played a key role in gonadal growth/maturation in scallops. In addition, this study found that several genes were involved in heat and hypoxia stress in scallops, providing new insights into the function of the TGF-ß superfamily. CONCLUSION: Characteristics of the TGF-ß superfamily in scallops were identified, including sequence structure, phylogenetic relationships, and selection pressure. The expression profiles of these genes in different tissues, at different developmental stages and under different stresses were investigated. Generally, the current study lays a foundation for further study of their pleiotropic biological functions in scallops.


Assuntos
Pectinidae , Animais , Filogenia , Pectinidae/genética , Pectinidae/metabolismo , Genoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
5.
J Mater Chem B ; 12(3): 752-761, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165891

RESUMO

Wound dressings play an important role in wound healing. However, many wound dressings lack antibacterial properties and are difficult to remove from newly grown tissues, causing secondary wound injuries and repeated medical treatment. This study reports a new type of thermal-responsive hydrogel dressing consisting of vancomycin-loaded gelatin nanospheres (GNs) and poly((N-isopropylacrylamide)-co-N-(methylol acrylamide)) functional components that could impart self-peeling and sustainable antibacterial properties. SEM images showed that the prepared hydrogel possessed a porous microstructure and the homogeneous distribution of GNs in its network. Excellent swelling ratios and thermal-induced self-peeling characteristics were confirmed by qualitative analysis. The GNs not only enhanced the strain at break of the hydrogel, but also acted as drug carriers to slow down the drug release from the hydrogel, achieving sustainable antibacterial properties and balanced biocompatibility. Therefore, this vancomycin-loaded hydrogel with self-peeling characteristics provides an effective way of preventing wound infection and can be used as a novel platform for wide-ranging applications of wound dressings.


Assuntos
Hidrogéis , Vancomicina , Hidrogéis/farmacologia , Hidrogéis/química , Vancomicina/farmacologia , Antibacterianos/farmacologia , Bandagens , Cicatrização
6.
Biol Trace Elem Res ; 202(4): 1669-1682, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37458914

RESUMO

Resveratrol (Res) possesses various beneficial effects, including cardioprotective, anti-inflammatory, anti-aging, and antioxidant properties. However, the precise mechanism underlying these effects remains unclear. Here we investigated the protective effects of resveratrol on cardiomyocytes, focusing on the role of Zn2+ and mitophagy. Using the MTT/lactate dehydrogenase assay, we found that addition of a zinc chelator TPEN for 4 h induced mitophagy and resulted in a significant reduction in cell viability, increased cytotoxicity, and apoptosis in H9c2 cells. Notably, resveratrol effectively mitigated these detrimental effects caused by TPEN. Similarly, Res inhibited the TPEN-induced expression of mitophagy-associated proteins, namely P62, LC3, NIX, TOM20, PINK1, and Parkin. The inhibitory action of resveratrol on mitophagy was abrogated by the mitophagy inhibitor 3-MA. Additionally, we discovered that silencing of the Mfn2 gene could reverse the inhibitory effects of resveratrol on mitophagy via the AMPK-Mfn2 axis, thereby preventing the opening of the mitochondrial permeability transition pore (mPTP). Collectively, our data suggest that Res can safeguard mitochondria protection by impeding mitophagy and averting mPTP opening through the AMPK-Mfn2 axis in myocardial cells.


Assuntos
Proteínas Quinases Ativadas por AMP , Etilenodiaminas , Mitofagia , Mitofagia/genética , Resveratrol/farmacologia , Miócitos Cardíacos/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia
7.
Cardiovasc Toxicol ; 23(11-12): 388-405, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37845565

RESUMO

Zinc homeostasis is essential for maintaining redox balance, cell proliferation, and apoptosis. However, excessive zinc exposure is toxic and leads to mitochondrial dysfunction. In this study, we established a zinc overload model by treating rat cardiomyocyte H9c2 cells with Zn2+ at different concentrations. Our results showed that zinc overload increased LDH and reactive oxygen species (ROS) levels, leading to cell death, mitochondrial membrane potential decrease and impaired mitochondrial function and dynamics. Furthermore, zinc overload activated the PINK1/Parkin signaling pathway and induced mitochondrial autophagy via ROS, while NAC inhibited mitophagy and weakened the activation of PINK1/Parkin pathway, thereby preserving mitochondrial biogenesis. In addition, our data also showed that Mfn2 deletion increased ROS production and exacerbated cytotoxicity induced by zinc overload. Our results therefore suggest that Zn2+-induced ROS generation causes mitochondrial autophagy and mitochondrial dysfunction, damaging H9c2 cardiomyocytes. Additionally, Mfn2 may play a key role in zinc ion-mediated endoplasmic reticulum and mitochondrial interactions. Our results provide a new perspective on zinc-induced toxicology.


Assuntos
Mitofagia , Miócitos Cardíacos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/metabolismo , Zinco/toxicidade , Proteínas Quinases/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
J Environ Manage ; 345: 118710, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536136

RESUMO

The widespread secondary microplastics (MPs) in urban freshwater, originating from plastic wastes, have created a new habitat called plastisphere for microorganisms. The factors influencing the structure and ecological risks of the microbial community within the plastisphere are not yet fully understood. We conducted an in-site incubation experiment in an urban river, using MPs from garbage bags (GB), shopping bags (SB), and plastic bottles (PB). Bacterial communities in water and plastisphere incubated for 2 and 4 weeks were analyzed by 16S high-throughput sequencing. The results showed the bacterial composition of the plastisphere, especially the PB, exhibited enrichment of plastic-degrading and photoautotrophic taxa. Diversity declined in GB and PB but increased in SB plastisphere. Abundance analysis revealed distinct bacterial species that were enriched or depleted in each type of plastisphere. As the succession progressed, the differences in community structure was more pronounced, and the decline in the complexity of bacterial community within each plastisphere suggested increasing specialization. All the plastisphere exhibited elevated pathogenicity at the second or forth week, compared to bacterial communities related to natural particles. These findings highlighted the continually evolving plastisphere in urban rivers was influenced by the plastic substrates, and attention should be paid to fragile plastic wastes due to the rapidly increasing pathogenicity of the bacterial community attached to them.


Assuntos
Microbiota , Microplásticos , Plásticos , Rios , Bactérias/genética
9.
Front Immunol ; 14: 1182411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503342

RESUMO

Background: Neuropathic pain is caused by a neurological injury or disease and can have a significant impact on people's daily lives. Studies have shown that neuropathic pain is commonly associated with neurodegenerative diseases. In recent years, there has been a lot of literature on the relationship between neuropathic pain and neurodegenerative diseases. However, bibliometrics is rarely used in analyzing the general aspects of studies on neuropathic pain in neurodegenerative diseases. Methods: The bibliometric analysis software CiteSpace and VOSviewer were used to analyze the knowledge graph of 387 studies in the Science Citation Index Expanded of the Web of Science Core Collection Database. Results: We obtained 2,036 documents through the search, leaving 387 documents after culling. 387 documents were used for the data analysis. The data analysis showed that 330 papers related to neuropathic pain in neurodegenerative diseases were published from 2007-2022, accounting for 85.27% of all published literature. In terms of contributions to the scientific study of neuropathic pain, the United States is in the top tier, with the highest number of publications, citations, and H-indexes. Conclusion: The findings in our study may provide researchers with useful information about research trends, frontiers, and cooperative institutions. Multiple sclerosis, Parkinson's disease, and Alzheimer's disease are the three most studied neurodegenerative diseases. Among the pathological basis of neurodegenerative diseases, microglia-regulated neuroinflammation is a hot research topic. Deep brain stimulation and gamma knife radiosurgery are two popular treatments.


Assuntos
Doença de Alzheimer , Neuralgia , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/terapia , Neuralgia/terapia , Bibliometria
10.
World Neurosurg ; 180: 155-162.e2, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37380050

RESUMO

BACKGROUND: Neuropathic pain (NeuP), the result of a lesion or disease of the somatosensory nervous system, is tricky to cure clinically. Mounting researches reveal that neuromodulation can safely and effectively ameliorate NeuP. The number of publications associated with neuromodulation and NeuP increases with time. However, bibliometric analysis on the field is rare. The present study aims to analyze trends and topics in neuromodulation and NeuP research by using a bibliometric method. METHODS: This study systematically collected the relevant publications on the Science Citation Index Expanded of Web of Science from January 1994 to January 17, 2023. CiteSpace software was used to draw and analyze corresponding visualization maps. RESULTS: A total of 1404 publications were ultimately obtained under our specified inclusion criteria. The analysis showed that the focus of research on neuromodulation and NeuP had been developing steadily in recent years, with papers published in 58 countries/regions and 411 academic journals. The Journal of Neuromodulation and the author J.P. Lefaucheur published the most papers. The papers published in Harvard University and the United States contributed significantly. The cited keywords show that motor cortex stimulation, spinal cord stimulation, electrical stimulation, transcranial magnetic stimulation, and mechanism are the research hotspots in the field. CONCLUSIONS: The bibliometric analysis showed that the number of publications on neuromodulation and NeuP are increasing rapidly, especially in the past 5 years. "Motor cortex stimulation," "electrical stimulation," "spinal cord stimulation," "transcranial magnetic stimulation" and "mechanism" catch the most attention among researchers in this field.


Assuntos
Córtex Motor , Neuralgia , Humanos , Neuralgia/terapia , Bibliometria , Estimulação Elétrica , Software
11.
Front Mol Neurosci ; 16: 1145393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152435

RESUMO

Objective: Neuropathic pain (NP) is a common disease that manifests with pathological changes in the somatosensory system. In recent years, the interactions of NP with the epigenetic mechanism have been increasingly elucidated. However, only a few studies have used bibliometric tools to systematically analyze knowledge in this field. The objective of this study is to visually analyze the trends, hotspots, and frontiers in epigenetics and NP research by using a bibliometric method. Methods: Studies related to epigenetics and NP were searched from the Science Citation Index-Expanded of the Web of Science Core Collection database. Search time is from inception to November 30, 2022. No restrictions were placed on language. Only articles and reviews were included as document types. Data on institutions, countries, authors, journal distribution, and keywords were imported into CiteSpace software for visual analysis. Results: A total of 867 publications met the inclusion criteria, which spanned the period from 2000 to 2022. Over the years, the number of publications and the frequency of citations exhibited a clear upward trend in general, reaching a peak in 2021. The major contributing countries in terms of the number of publications were China, the United States, and Japan. The top three institutions were Rutgers State University, Xuzhou Medical University, and Nanjing Medical University. Molecular Pain, Pain, and Journal of Neuroinflammation contributed significantly to the volume of issues. Among the top 10 authors in terms of the number of publications, Tao Yuan-Xiang contributed 30 entries, followed by Zhang Yi with 24 and Wu Shao-Gen with 20. On the basis of the burst and clusters of keywords, "DNA methylation," "Circular RNA," "acetylation," "long non-coding RNA," and "microglia" are global hotspots in the field. Conclusion: The bibliometric analysis indicates that the number of publications related to epigenetics and NP is exhibiting a rapid increase. Keyword analysis shows that "DNA methylation," "Circular RNA," "acetylation," "long non-coding RNA" and "microglia" are the most interesting terms for researchers in the field. More rigorous clinical trials and additional studies that explore relevant mechanisms are required in the future.

12.
Front Oncol ; 12: 1026647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531048

RESUMO

Neoadjuvant chemotherapy (NAC) is widely accepted as a primary treatment for inoperable or locally advanced breast cancer before definitive surgery. However, not all advanced breast cancers are sensitive to NAC. Contrast-enhanced ultrasonography (CEUS) has been considered to assess tumor response to NAC as it can effectively reflect the condition of blood perfusion and lesion size. Therefore, this study aimed to evaluate the diagnostic performance of CEUS to predict early response in different regions of interest in breast tumors under NAC treatment. This prospective study included 82 patients with advanced breast cancer. Parameters of TIC (time-intensive curve) between baseline and after the first cycle of NAC were calculated for the rate of relative change (Δ), including Δpeak, ΔTTP (time to peak), ΔRBV (regional blood volume), ΔRBF (regional blood flow) and ΔMTT (mean transit time). The responders and non-responders were distinguished by the Miller-Payne Grading (MPG) system and parameters from different regions of tumors were compared in these two groups. For ROI 1(the greatest enhancement area in the central region of the tumor), there were significant differences in Δpeak1, ΔRBV1 and ΔRBF1 between responders and non-responders. For ROI 2 (the greatest enhancement area on edge of the tumor), there were significant differences in Δpeak2 and ΔRBF2 between the groups. The Δpeak1 and ΔRBF2 showed good prediction (AUC 0.798-0.820, p ≤ 0.02) after the first cycle of NAC. When the cut-off value was 0.115, the ΔRBF2 had the highest diagnostic accuracy and the maximum NPV. Quantitative TIC parameters could be effectively used to evaluate early response to NAC in advanced breast cancer.

13.
Front Immunol ; 13: 999470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110841

RESUMO

Interleukin-10 (IL-10) is a widely recognized immunosuppressive factor. Although the concept that IL-10 executes an anti-inflammatory role is accepted, the relationship between IL-10 and atherosclerosis is still unclear, thus limiting the application of IL-10-based therapies for this disease. Emerging evidence suggests that IL-10 also plays a key role in energy metabolism and regulation of gut microbiota; however, whether IL-10 can affect atherosclerotic lesion development by integrating lipid and tissue homeostasis has not been investigated. In the present study, we developed a human-like hamster model deficient in IL-10 using CRISPR/Cas9 technology. Our results showed that loss of IL-10 changed the gut microbiota in hamsters on chow diet, leading to an increase in lipopolysaccharide (LPS) production and elevated concentration of LPS in plasma. These changes were associated with systemic inflammation, lipodystrophy, and dyslipidemia. Upon high cholesterol/high fat diet feeding, IL-10-deficient hamsters exhibited abnormal distribution of triglyceride and cholesterol in lipoprotein particles, impaired lipid transport in macrophages and aggravated atherosclerosis. These findings show that silencing IL-10 signaling in hamsters promotes atherosclerosis by affecting lipid and tissue homeostasis through a gut microbiota/adipose tissue/liver axis.


Assuntos
Aterosclerose , Interleucina-10 , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Sistemas CRISPR-Cas , Colesterol/metabolismo , Cricetinae , Dieta Hiperlipídica/efeitos adversos , Homeostase , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos , Lipoproteínas/metabolismo , Triglicerídeos
14.
Cell Signal ; 100: 110467, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126793

RESUMO

Zn2+ regulates endoplasmic reticulum stress (ERS) and is essential for myocardial protection through gating the mitochondrial permeability transition pore (mPTP). However, the underlining mechanism of the mPTP opening remains uncertain. Cells under sustained ERS induce unfolded protein responses (UPR) and cell apoptosis. Glucose regulatory protein 78 (GRP 78) and glucose regulatory protein 94 (GRP 94) are marker proteins of ERS and regulate the onset of apoptosis through the endoplasmic reticulum signaling pathway. We found tunicamycin (TM) treatment activates ERS and significantly increases intracellular Ca2+ and mitochondrial reactive oxygen species (ROS) levels in H9c2 cardiomyocyte cells. Zn2+ markedly decreased protein level of GRP 78/94 and suppressed intracellular Ca2+ and ROS elevation. Mitochondrial calcium uniporter (MCU) is an important Ca2+ transporter protein, through which Zn2+ enter mitochondria. MCU inhibitor ruthenium red (RR) or siRNA significantly reversed the Zinc effect on GRP 78, mitochondrial Ca2+ and ROS. Additionally, Zn2+ prevented TM-induced mPTP opening and decreased mitochondrial Ca2+ concentration, which were blocked through inhibiting or knockdown MCU with siRNA. In summary, our study suggests that Zn2+ protected cardiac ERS by elevating Ca2+ and closing mPTP through MCU.

15.
Front Aging Neurosci ; 14: 984705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158544

RESUMO

Objective: Alzheimer's disease (AD) is a socially significant neurodegenerative disorder among the elderly worldwide. An increasing number of studies have revealed that as a non-pharmacological intervention, exercise can prevent and treat AD. However, information regarding the research status of this field remains minimal. Therefore, this study aimed to analyze trends and topics in exercise and AD research by using a bibliometric method. Methods: We systematically searched the Web of Science Core Collection for published papers on exercise and AD. The retrieved data regarding institutions, journals, countries, authors, journal distribution, and keywords were analyzed using CiteSpace software. Meanwhile, the co-occurrence of keywords was constructed. Results: A total of 1,104 papers were ultimately included in accordance with our specified inclusion criteria. The data showed that the number of published papers on exercise and AD is increasing each year, with papers published in 64 countries/regions and 396 academic journals. The Journal of Alzheimer's Disease published the most papers (73 publications). Journals are concentrated in the fields of neuroscience and geriatrics gerontology. The University of Kansas and the United States are the major institution and country, respectively. The cited keywords show that oxidative stress, amyloid beta, and physical exercise are the research hotspots in recent years. After analysis, the neuroprotective effect of exercise was identified as the development trend in this field. Conclusions: Based on a bibliometric analysis, the number of publications on exercise and AD has been increasing rapidly, especially in the past 10 years. "Amyloid beta," "oxidative stress," and "exercise program" trigger the most interest among researchers in this field. The study of exercise program and mechanism of exercise in AD is still the focus of future research.

16.
ACS Omega ; 7(33): 29116-29124, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033700

RESUMO

The transformation behavior of pyrite (FeS2) in the blast furnace process is critical to control the formation and emission of gaseous sulfides in the top gas of ironmaking but has seldom been explored. In present work, the pyrolysis of pyrite from 200 to 900 °C under a CO-H2 atmosphere was investigated by thermal-gravimetric and mass spectrometry. The thermodynamic theoretical calculations were carried out to further understand the transformation process. The results show that FeS2 is almost completely reduced to FeS under various CO-H2 atmospheres. H2S and carbonyl sulfide (COS) are the main gaseous sulfides formed through the pyrolysis reactions of FeS2 under a CO-H2 atmosphere. A higher H2 concentration can reduce the pyrolysis reaction temperature of FeS2, which is favorable for the conversion of sulfides to H2S, while a higher CO concentration promotes the conversion of sulfides to COS. Besides, the pyrolysis products of FeS2 by order from the former to latter under a strong reductive atmosphere (CO-H2) with increasing temperature are as follows: COS → S → H2S → S2 → CS2.

17.
Front Mol Neurosci ; 15: 865310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431794

RESUMO

Exercise can help inhibition of neuropathic pain (NP), but the related mechanism remains being explored. In this research, we performed the effect of swimming exercise on the chronic constriction injury (CCI) rats. Compared with CCI group, the mechanical withdrawal threshold of rats in the CCI-Swim group significantly increased on the 21st and 28th day after CCI surgery. Second-generation RNA-sequencing technology was employed to investigate the transcriptomes of spinal dorsal horns in the Sham, CCI, and CCI-Swim groups. On the 28th day post-operation, 306 intersecting long non-coding RNAs (lncRNAs) and 173 intersecting mRNAs were observed between the CCI vs Sham group and CCI-Swim vs CCI groups. Then, the biological functions of lncRNAs and mRNAs in the spinal dorsal horn of CCI rats were then analyzed. Taking the results together, this study could provide a novel perspective for the treatment for NP.

18.
World Neurosurg ; 164: e214-e223, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35472644

RESUMO

OBJECTIVE: This study aimed to determine the effects of sacral nerve electrical stimulation (SNS) on neuronal nitric oxide synthase (nNOS) in the colon and sacral cord of rats with defecation disorder after spinal cord injury (SCI). METHODS: Rats with severe SCI (T10) were used as models and randomly divided into an SCI group and an SNS group. After 14 days of treatment, the intestinal transport function was assessed. Finally, the differences in nNOS immunoreactive cells, protein levels, nNOS mRNA, and NO content in the colon and sacral cord tissues were estimated using immunohistochemistry, Western blot, real-time polymerase chain reaction, and nitrate reductase method. RESULTS: The intestinal transport function of the SNS group was superior to that of the SCI group (P < 0.05). The average optical density of nNOS immunoreactive positive cells in the SCI group were significantly increased compared with those in the sham group. The content of NO of the SCI group significant increased compared with those of the sham group and the SNS group (both P < 0.01). The nNOS mRNA and protein expression was higher in the SCI group than in the sham group (P < 0.01), while that in the SNS group was significantly lower than that in the SCI group. CONCLUSIONS: SNS could reduce nNOS expression in the colon and sacral cord of SCI rats. This reduction may be an important neuromodulation mechanism for SNS to improve defecation reflex and promote the recovery of intestinal transit function.


Assuntos
Defecação , Traumatismos da Medula Espinal , Animais , Colo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo I/farmacologia , RNA Mensageiro/metabolismo , Ratos , Medula Espinal
19.
Mol Cell ; 82(8): 1528-1542.e10, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35245436

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a global health concern with no approved drugs. High-protein dietary intervention is currently the most effective treatment. However, its underlying mechanism is unknown. Here, using Drosophila oenocytes, the specialized hepatocyte-like cells, we find that dietary essential amino acids ameliorate hepatic steatosis by inducing polyubiquitination of Plin2, a lipid droplet-stabilizing protein. Leucine and isoleucine, two branched-chain essential amino acids, strongly bind to and activate the E3 ubiquitin ligase Ubr1, targeting Plin2 for degradation. We further show that the amino acid-induced Ubr1 activity is necessary to prevent steatosis in mouse livers and cultured human hepatocytes, providing molecular insight into the anti-NAFLD effects of dietary protein/amino acids. Importantly, split-intein-mediated trans-splicing expression of constitutively active UBR2, an Ubr1 family member, significantly ameliorates obesity-induced and high fat diet-induced hepatic steatosis in mice. Together, our results highlight activation of Ubr1 family proteins as a promising strategy in NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Aminoácidos Essenciais/metabolismo , Aminoácidos Essenciais/farmacologia , Aminoácidos Essenciais/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ubiquitinação
20.
Front Cardiovasc Med ; 9: 840358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187136

RESUMO

RATIONALE: ApoC3 plays a central role in the hydrolysis process of triglyceride (TG)-rich lipoproteins mediated by lipoprotein lipase (LPL), which levels are positively associated with the incidence of cardiovascular disease (CVD). Although targeting ApoC3 by antisense oligonucleotide (ASO), Volanesorsen markedly reduces plasma TG level and increase high-density lipoprotein cholesterol (HDL-C) in patients with hypertriglyceridemia (HTG), the cholesterol-lowering effect of ApoC3 inhibition and then the consequential outcome of atherosclerotic cardiovascular disease (ASCVD) have not been reported in patients of familial hypercholesterolemia (FH) with severe refractory hypercholesterolemia yet. OBJECTIVE: To investigate the precise effects of depleting ApoC3 on refractory hypercholesterolemia and atherosclerosis, we crossed ApoC3-deficient hamsters with a background of LDLR deficiency to generate a double knockout (DKO) hamster model (LDLR-/-, XApoC3-/-, DKO). APPROACH AND RESULTS: On the standard laboratory diet, DKO hamsters had reduced levels of plasma TG and total cholesterol (TC) relative to LDLR-/- hamsters. However, upon high-cholesterol/high-fat (HCHF) diet feeding for 12 weeks, ApoC3 deficiency reduced TG level only in female animals without affecting refractory cholesterol in the circulation, whereas apolipoprotein A1 (ApoA1) levels were significantly increased in DKO hamsters with both genders. Unexpectedly, loss of ApoC3 paradoxically accelerated diet-induced atherosclerotic development in female and male LDLR-/- hamsters but ameliorated fatty liver in female animals. Further analysis of blood biological parameters revealed that lacking ApoC3 resulted in abnormal platelet (PLT) indices, which could potentially contribute to atherosclerosis in LDLR-/- hamsters. CONCLUSIONS: In this study, our novel findings provide new insight into the application of ApoC3 inhibition for severe refractory hypercholesterolemia and ASCVD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA