Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Environ Res ; : 119296, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824985

RESUMO

As the rapidly growing number of waste lithium-ion batteries (LIBs), the recycling and reutilization of anode graphite is of increasing interest. Converting waste anode graphite into functional materials may be a sensible option. Herein, a series of carbonaceous catalysts (TG) were successfully prepared using spent anode graphite calcined at various temperatures and applied for activating peroxymonosulfate (PMS) to degrade atrazine (ATZ). The catalyst obtained at 800 °C (TG-800) showed the optimum performance for ATZ removal (99.2% in 6 min). Various experimental conditions were explored to achieve the optimum efficiency of the system. In the TG-800/PMS system, free radicals (e.g., SO4·-, HO·), singlet oxygen (1O2), together with a direct electron transfer pathway all participated in ATZ degradation, and the ketonic (C=O) group was proved as the leading catalytic site for PMS activation. The potential degradation routes of ATZ have also been presented. According to the toxicity assessment experiments, the toxicity of the intermediate products decreased. The reusability and universal applicability of the TG-800 were also confirmed. This research not only provides an efficient PMS activator for pollutant degradation, but also offers a meaningful reference for the recovery of waste anode graphite to develop environmentally functional materials.

2.
Nat Prod Bioprospect ; 14(1): 33, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771401

RESUMO

N-Hydroxyapiosporamide (N-hydap), a marine product derived from a sponge-associated fungus, has shown promising inhibitory effects on small cell lung cancer (SCLC). However, there is limited understanding of its metabolic pathways and characteristics. This study explored the in vitro metabolic profiles of N-hydap in human recombinant cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs), as well as human/rat/mice microsomes, and also the pharmacokinetic properties by HPLC-MS/MS. Additionally, the cocktail probe method was used to investigate the potential to create drug-drug interactions (DDIs). N-Hydap was metabolically unstable in various microsomes after 1 h, with about 50% and 70% of it being eliminated by CYPs and UGTs, respectively. UGT1A3 was the main enzyme involved in glucuronidation (over 80%), making glucuronide the primary metabolite. Despite low bioavailability (0.024%), N-hydap exhibited a higher distribution in the lungs (26.26%), accounting for its efficacy against SCLC. Administering N-hydap to mice at normal doses via gavage did not result in significant toxicity. Furthermore, N-hydap was found to affect the catalytic activity of drug metabolic enzymes (DMEs), particularly increasing the activity of UGT1A3, suggesting potential for DDIs. Understanding the metabolic pathways and properties of N-hydap should improve our knowledge of its drug efficacy, toxicity, and potential for DDIs.

3.
Small ; : e2310396, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607299

RESUMO

Transition metal chalcogenides (TMCs) are widely used in photocatalytic fields such as hydrogen evolution, nitrogen fixation, and pollutant degradation due to their suitable bandgaps, tunable electronic and optical properties, and strong reducing ability. The unique 2D malleability structure provides a pre-designed platform for customizable structures. The introduction of vacancy engineering makes up for the shortcomings of photocorrosion and limited light response and provides the greatest support for TMCs in terms of kinetics and thermodynamics in photocatalysis. This work reviews the effect of vacancy engineering on photocatalytic performance based on 2D semiconductor TMCs. The characteristics of vacancy introduction strategies are summarized, and the development of photocatalysis of vacancy engineering TMCs materials in energy conversion, degradation, and biological applications is reviewed. The contribution of vacancies in the optical range and charge transfer kinetics is also discussed from the perspective of structure manipulation. Vacancy engineering not only controls and optimizes the structure of the TMCs, but also improves the optical properties, charge transfer, and surface properties. The synergies between TMCs vacancy engineering and atomic doping, other vacancies, and heterojunction composite techniques are discussed in detail, followed by a summary of current trends and potential for expansion.

4.
Water Res ; 253: 121255, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341971

RESUMO

Tracking nitrogen pollution sources is crucial for the effective management of water quality; however, it is a challenging task due to the complex contaminative scenarios in the freshwater systems. The contaminative pattern variations can induce quick responses of aquatic microorganisms, making them sensitive indicators of pollution origins. In this study, the soil and water assessment tool, accompanied by a detailed pollution source database, was used to detect the main nitrogen pollution sources in each sub-basin of the Liuyang River watershed. Thus, each sub-basin was assigned to a known class according to SWAT outputs, including point source pollution-dominated area, crop cultivation pollution-dominated area, and the septic tank pollution-dominated area. Based on these outputs, the random forest (RF) model was developed to predict the main pollution sources from different river ecosystems using a series of input variable groups (e.g., natural macroscopic characteristics, river physicochemical properties, 16S rRNA microbial taxonomic composition, microbial metagenomic data containing taxonomic and functional information, and their combination). The accuracy and the Kappa coefficient were used as the performance metrics for the RF model. Compared with the prediction performance among all the input variable groups, the prediction performance of the RF model was significantly improved using metagenomic indices as inputs. Among the metagenomic data-based models, the combination of the taxonomic information with functional information of all the species achieved the highest accuracy (0.84) and increased median Kappa coefficient (0.70). Feature importance analysis was used to identify key features that could serve as indicators for sudden pollution accidents and contribute to the overall function of the river system. The bacteria Rhabdochromatium marinum, Frankia, Actinomycetia, and Competibacteraceae were the most important species, whose mean decrease Gini indices were 0.0023, 0.0021, 0.0019, and 0.0018, respectively, although their relative abundances ranged only from 0.0004 to 0.1 %. Among the top 30 important variables, functional variables constituted more than half, demonstrating the remarkable variation in the microbial functions among sites with distinct pollution sources and the key role of functionality in predicting pollution sources. Many functional indicators related to the metabolism of Mycobacterium tuberculosis, such as K24693, K25621, K16048, and K14952, emerged as significant important factors in distinguishing nitrogen pollution origins. With the shortage of pollution source data in developing regions, this suggested approach offers an economical, quick, and accurate solution to locate the origins of water nitrogen pollution using the metagenomic data of microbial communities.


Assuntos
Microbiota , Poluentes Químicos da Água , Nitrogênio/análise , Rios/química , RNA Ribossômico 16S , Poluição da Água/análise , Monitoramento Ambiental , China , Poluentes Químicos da Água/análise
5.
J Sep Sci ; 47(1): e2300583, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234034

RESUMO

Aconite is the processed product of the seed root of Aconitum carmichaelii Debx. Aconite is a commonly used traditional Chinese medicine, which is generally used after processing. Black aconite, light aconite, and salted aconite are three different processed aconite products. They have the effects of restoring yang and saving energy enemy, dispersing cold, and relieving pain. However, clinical aconite poisoning cases have frequently been reported. In our study, we investigated the effects of three different processed aconite products on the changes of metabolites in vivo. A total of 42 rats were randomly divided into seven groups with six rats in each group. After three consecutive days of intragastric administration of 2.7 g/kg of the aconite-processed product, rat serums were obtained. The rat metabolites were detected using liquid chromatography-tandem mass spectrometry. The altered metabolites related to aconite-processed products were discovered by statistical analysis using metaboanalyst software. Our study is the first time to comprehensively evaluate the effects of three different processed aconite products on rat metabolites based on pseudotargeted metabolomics.


Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Ratos , Animais , Aconitum/química , Medicamentos de Ervas Chinesas/análise , Raízes de Plantas/química , Medicina Tradicional Chinesa , Cromatografia Líquida , Metabolômica/métodos
6.
J Hepatol ; 80(3): 454-466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37952766

RESUMO

BACKGROUND & AIMS: Hereditary tyrosinemia type 1 (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury. Therapeutic options for HT1 remain limited. In this study, we aimed to construct an engineered bacterium capable of reprogramming host metabolism and thereby provide a potential alternative approach for the treatment of HT1. METHODS: Escherichia coli Nissle 1917 (EcN) was engineered to express genes involved in tyrosine metabolism in the anoxic conditions that are characteristic of the intestine (EcN-HT). Bodyweight, survival rate, plasma (tyrosine/liver function), H&E staining and RNA sequencing were used to assess its ability to degrade tyrosine and protect against lethal liver injury in Fah-knockout (KO) mice, a well-accepted model of HT1. RESULTS: EcN-HT consumed tyrosine and produced L-DOPA (levodopa) in an in vitro system. Importantly, in Fah-KO mice, the oral administration of EcN-HT enhanced tyrosine degradation, reduced the accumulation of toxic metabolites, and protected against lethal liver injury. RNA sequencing analysis revealed that EcN-HT rescued the global gene expression pattern in the livers of Fah-KO mice, particularly of genes involved in metabolic signaling and liver homeostasis. Moreover, EcN-HT treatment was found to be safe and well-tolerated in the mouse intestine. CONCLUSIONS: This is the first report of an engineered live bacterium that can degrade tyrosine and alleviate lethal liver injury in mice with HT1. EcN-HT represents a novel engineered probiotic with the potential to treat this condition. IMPACT AND IMPLICATIONS: Patients with hereditary tyrosinemia type 1 (HT1) are characterized by an inability to metabolize tyrosine normally and suffer from liver failure, renal dysfunction, neurological impairments, and cancer. Given the overlap and complementarity between the host and microbial metabolic pathways, the gut microbiome provides a potential chance to regulate host metabolism through degradation of tyrosine and reduction of byproducts that might be toxic. Herein, we demonstrated that an engineered live bacterium, EcN-HT, could enhance tyrosine breakdown, reduce the accumulation of toxic tyrosine byproducts, and protect against lethal liver injury in Fah-knockout mice. These findings suggested that engineered live biotherapeutics that can degrade tyrosine in the gut may represent a viable and safe strategy for the prevention of lethal liver injury in HT1 as well as the mitigation of its associated pathologies.


Assuntos
Tirosinemias , Humanos , Camundongos , Animais , Tirosinemias/complicações , Tirosinemias/genética , Tirosinemias/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Camundongos Knockout , Tirosina/metabolismo , Escherichia coli/genética
7.
Cell Host Microbe ; 32(1): 48-62.e9, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38056458

RESUMO

Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.


Assuntos
Acetaminofen , Falência Hepática Aguda , Humanos , Camundongos , Animais , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Magnésio/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo
8.
Chemosphere ; 350: 140998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142881

RESUMO

Aggregation kinetics of plastics are affected by the surface functional groups and exposure orders (electrolyte and protein) with kinds of mechanisms in aquatic environment. This study investigates the aggregation of polystyrene nanoplastics (PSNPs) with varying surface functional groups in the presence of common electrolytes (NaCl, CaCl2, Na2SO4) and bovine serum albumin (BSA). It also examines the impact of different exposure orders, namely BSA + NaCl (adding them together), BSA → NaCl (adding BSA firstly and then NaCl), and NaCl → BSA (adding NaCl firstly and then BSA), on PSNPs aggregation. The presence of BSA decreased the critical coagulation concentration in NaCl (CCCNa+) of the non-modified PS-Bare from 222.17 to 142.81 mM (35.72%), but increased that of the carboxyl-modified PS-COOH from 157.34 to 160.03 mM (1.71%). This might be ascribed to the thicker absorbed layer of BSA onto the PS-Bare surface, known from Ohshima's soft particle theory. Their aggregation in CaCl2 was both increased because of Ca2+ bridging. Different from the monotonous effects of BSA on PS-Bare and PS-COOH, BSA initially facilitated PS-NH2 aggregation via patch-charge attraction, then inhibited it at higher salt levels through steric repulsion. Furthermore, exposure orders had no significant effect on PS-Bare and PS-COOH, but had a NaCl concentration-dependent impact on PS-NH2. At the low NaCl concentrations (10 and 100 mM), no obvious influence could be observed. While, at 300 mM NaCl, the high concentrations of BSA could not totally stabilize the salt-induced aggregates in NaCl → BSA, but could achieve it in the other two orders. These might be attributed to the electrical double layer compression by NaCl, "patch-charge" force and steric hindrance by BSA. These experimental findings shed light on the potential fate and transport of nanoparticles in aquatic environments.


Assuntos
Nanopartículas , Poliestirenos , Microplásticos , Cloreto de Sódio , Cloreto de Cálcio , Eletrólitos , Soroalbumina Bovina
9.
Chem Commun (Camb) ; 59(86): 12863-12866, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37815878

RESUMO

Quinary RuRhPdPtAu high-entropy alloy nanoparticles (HEA-NPs) were prepared for the first time from a deep eutectic solvent by an electrochemical method. Owing to the benefits of high entropy and abundant surface active sites, the RuRhPdPtAu HEA-NPs exhibit outstanding electrocatalytic performance for the hydrogen evolution reaction.

10.
Mol Ther Nucleic Acids ; 34: 102028, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37744175

RESUMO

Double-stranded DNA-specific cytidine deaminase (DddA) base editors hold great promise for applications in bio-medical research, medicine, and biotechnology. Strict sequence preference on spacing region presents a challenge for DddA editors to reach their full potential. To overcome this sequence-context constraint, we analyzed a protein dataset and identified a novel DddAtox homolog from Ruminococcus sp. AF17-6 (RsDddA). We engineered RsDddA for mitochondrial base editing in a mammalian cell line and demonstrated RsDddA-derived cytosine base editors (RsDdCBE) offered a broadened NC sequence compatibility and exhibited robust editing efficiency. Moreover, our results suggest the average frequencies of mitochondrial genome-wide off-target editing arising from RsDdCBE are comparable to canonical DdCBE and its variants.

11.
Ultrason Sonochem ; 100: 106600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741022

RESUMO

Recently, bismuth (Bi)-based photocatalysts have been a well-deserved hotspot in the field of photocatalysis owning to their photoelectrochemical properties driven by the distortion of the Bi 6 s orbital, while their narrow band gap and poor quantum efficiency still restrict their application. With the development of ultrasonic technology, it is expected to become a broom to clear the application obstacles of Bi-based photocatalysts. The special forces and environmental conditions brought by ultrasonic irradiation play beneficial roles in the preparation, modification and performance releasement of Bi-based photocatalysts. In this review, the role and influencing factors of ultrasound in the preparation and modification of Bi-based photocatalysts were introduced. Crucially, the mechanism of the improving the performance for various types of Bi-based photocatalysts by ultrasound in the whole process of photocatalysis was deeply analyzed. Then, the application of ultrasonic synergistic Bi-based photocatalysts in contaminants treatment and energy conversion was briefly introduced. Finally, based on an unambiguous understanding of ultrasonic technology in assisting Bi-based photocatalysts, the future directions and possibilities for ultrasonic synergistic Bi-based photocatalysts are explored.

12.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628773

RESUMO

Gene expression in eukaryotes begins with transcription in the nucleus, followed by the synthesis of messenger RNA (mRNA), which is then exported to the cytoplasm for its translation into proteins. Along with transcription and translation, mRNA export through the nuclear pore complex (NPC) is an essential regulatory step in eukaryotic gene expression. Multiple factors regulate mRNA export and hence gene expression. Interestingly, proteins from certain types of viruses interact with these factors in infected cells, and such an interaction interferes with the mRNA export of the host cell in favor of viral RNA export. Thus, these viruses hijack the host mRNA nuclear export mechanism, leading to a reduction in host gene expression and the downregulation of immune/antiviral responses. On the other hand, the viral mRNAs successfully evade the host surveillance system and are efficiently exported from the nucleus to the cytoplasm for translation, which enables the continuation of the virus life cycle. Here, we present this review to summarize the mechanisms by which viruses suppress host mRNA nuclear export during infection, as well as the key strategies that viruses use to facilitate their mRNA nuclear export. These studies have revealed new potential antivirals that may be used to inhibit viral mRNA transport and enhance host mRNA nuclear export, thereby promoting host gene expression and immune responses.


Assuntos
Viroses , Humanos , Transporte Ativo do Núcleo Celular , Antivirais , Transporte de RNA , Eucariotos , RNA Mensageiro/genética
13.
mBio ; 14(4): e0351222, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37366613

RESUMO

Stringent control of the type I interferon (IFN-I) signaling is critical for host immune defense against infectious diseases, yet the molecular mechanisms that regulate this pathway remain elusive. Here, we show that Src homology 2 containing inositol phosphatase 1 (SHIP1) suppresses IFN-I signaling by promoting IRF3 degradation during malaria infection. Genetic ablation of Ship1 in mice leads to high levels of IFN-I and confers resistance to Plasmodium yoelii nigeriensis (P.y.) N67 infection. Mechanistically, SHIP1 promotes the selective autophagic degradation of IRF3 by enhancing K63-linked ubiquitination of IRF3 at lysine 313, which serves as a recognition signal for NDP52-mediated selective autophagic degradation. In addition, SHIP1 is downregulated by IFN-I-induced miR-155-5p upon P.y. N67 infection and severs as a feedback loop of the signaling crosstalk. This study reveals a regulatory mechanism between IFN-I signaling and autophagy, and verifies SHIP1 can be a potential target for therapeutic intervention against malaria and other infectious diseases. IMPORTANCE Malaria remains a serious disease affecting millions of people worldwide. Malaria parasite infection triggers tightly controlled type I interferon (IFN-I) signaling that plays a critical role in host innate immunity; however, the molecular mechanisms underlying the immune responses are still elusive. Here, we discover a host gene [Src homology 2-containing inositol phosphatase 1 (SHIP1)] that can regulate IFN-I signaling by modulating NDP52-mediated selective autophagic degradation of IRF3 and significantly affect parasitemia and resistance of Plasmodium-infected mice. This study identifies SHIP1 as a potential target for immunotherapies in malaria and highlights the crosstalk between IFN-I signaling and autophagy in preventing related infectious diseases. SHIP1 functions as a negative regulator during malaria infection by targeting IRF3 for autophagic degradation.

14.
Stem Cell Res ; 69: 103102, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148822

RESUMO

Prime Editor (PE) is a precise genome manipulation technology based on the CRISPR-Cas9 system, while its application in human induced pluripotent stem cells (iPSCs) remains limited. Here, we established a repaired hiPS cell line (SKLRMi001-A-1) from hiPSCs with androgen receptor (AR) mutation (c.2710G > A; p.V904M). The repaired iPSC line expressed pluripotency markers, retained normal karyotype, showed the capability of differentiating into three germ layers and was absence of mycoplasma infection. The repaired iPSC line will help to elucidate the mechanism of androgen insensitivity syndrome (AIS) and benefit treatment for AIS in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Linhagem Celular , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Receptores Androgênicos/genética
15.
J Pediatr ; 259: 113461, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172809

RESUMO

OBJECTIVE: To evaluate vaccine effectiveness (VE) of a live oral pentavalent rotavirus vaccine (RotaTeq, RV5) among young children in Shanghai, China, via a test-negative design study. STUDY DESIGN: We consecutively recruited children visiting a tertiary children's hospital for acute diarrhea from November 2021 to February 2022. Information on clinical data and rotavirus vaccination was collected. Fresh fecal samples were obtained for rotavirus detection and genotyping. To evaluate VE of RV5 against rotavirus gastroenteritis among young children, unconditional logistic regression models were conducted to compare ORs for vaccination between rotavirus-positive cases and test-negative controls. RESULTS: A total of 390 eligible children with acute diarrhea were enrolled, including 45 (11.54%) rotavirus-positive cases and 345 (88.46%) test-negative controls. After excluding 4 cases (8.89%) and 55 controls (15.94%) who had received the Lanzhou lamb rotavirus vaccine, 41 cases (12.39%) and 290 controls (87.61%) were included for the evaluation of RV5 VE. After adjustment for potential confounders, the 3-dose RV5 vaccination showed 85% (95% CI, 50%-95%) VE against mild to moderate rotavirus gastroenteritis among children aged 14 weeks to ≤4 years and 97% (95% CI, 83%-100%) VE among children aged 14 weeks to ≤2 years with genotypes G8P8, G9P8, and G2P4 represented 78.95%, 18.42%, and 2.63% of circulation strains, respectively. CONCLUSIONS: A 3-dose vaccination of RV5 is highly protective against rotavirus gastroenteritis among young children in Shanghai. The G8P8 genotype prevailled in Shanghai after RV5 introduction.


Assuntos
Gastroenterite , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Humanos , Vacinas contra Rotavirus/uso terapêutico , Gastroenterite/epidemiologia , Gastroenterite/prevenção & controle , Vacinas Combinadas , China/epidemiologia , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Diarreia/epidemiologia , Diarreia/prevenção & controle , Vacinação , Hospitalização
16.
ACS Omega ; 8(19): 17245-17253, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214689

RESUMO

Ginsenoside Rh2 (Rh2) is one of the most effective anticancer components extracted from red ginseng, but the poor solubility limits its clinical application. In this paper, ginsenoside Rh2 was modified with maleimidocaproic acid or maleimidoundecanoic acid with functional groups at both ends. The structures of derivatives were determined by analysis of 1D and 2D nuclear magnetic resonance, Fourier transform infrared, and high-resolution mass spectrometry. Antiproliferative cell experiments showed that Rh2 modified with maleimidocaproic acid (C-Rh2) displayed higher cytostatic activity against different tumor cells compared with Rh2, while Rh2 modified with maleimidoundecanoic acid (U-Rh2) did not exhibit obvious cytotoxicity. The results suggest that the length of the spacer arm may play an important role in the cytostatic activity of the Rh2 derivatives.

17.
Environ Sci Pollut Res Int ; 30(14): 40846-40859, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36622594

RESUMO

Heavy metal pollution has been a magnificent concern for a long period. A novel magnetic material, MnO2/PDA@Fe3O4, was prepared in this paper. With the assistance of multiple characterization methods, it was confirmed that polydopamine coated the magnetic nucleus and acted as a dense intermediate layer for MnO2 attachment. Having superior adsorption performance, MnO2/PDA@Fe3O4 could remove heavy metal cations efficiently no matter in single or mixed systems. The maximum adsorption capacities calculated by the Langmuir model for Pb(II), Cu(II), and Cd(II) were 295.01 mg/g, 130.30 mg/g, and 115.16 mg/g, respectively. In mixed systems, the adsorbent showed obvious selectivity for Pb(II). And the variation of Cu(II) concentration was more responsible for Pb(II) adsorption than that of Cd(II). The kinetic and thermodynamic data revealed that the polluted ions immobilizations by MnO2/PDA@Fe3O4 were chemisorption and were endothermic, entropy increase, spontaneous process. The presence of humic acid and coexisting ions induced only a very limited interference. In addition, MnO2/PDA@Fe3O4 maintained excellent adsorption performance and stability after five cycles of adsorption and removed 98.33% Pb(II) and 71.24% Cu(II) from actual water, respectively. This study confirmed that the MnO2/PDA@Fe3O4 had great potential and broad prospects to remediate the heavy metal contaminants in water.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio , Compostos de Manganês , Chumbo , Óxidos , Água , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Cinética , Íons
18.
Chemosphere ; 310: 136805, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36223821

RESUMO

Natural inorganic colloids (NICs) are the most common and dominant existence in the ecosystem, with high concentration and wide variety. In spite of the low toxicity, they can alter activity and mobility of hazardous engineered nanoparticles (ENPs) through different interactions, which warrants the necessity to understand and predict the fate and transport of NICs in aquatic ecosystems. Here, this review summarized NICs properties and behaviors, interaction mechanisms and environmental factors at the first time. Various representative NICs and their physicochemical properties were introduced across the board. Then, the aggregation and sedimentation behaviors were discussed systematically, mainly concerning the heteroaggregation between NICs and ENPs. To speculate their fate and elucidate the corresponding mechanisms, the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (X-DLVO) theories were focused. Furthermore, a range of intrinsic and extrinsic factors was presented in different perspective. Last but not the least, this paper pointed out theoretical and analytical gaps in current researches, and put forward suggestions for further research, aiming to provide a more comprehensive and original perspective in the fields of natural occurring colloids.


Assuntos
Ecossistema , Nanopartículas , Cinética , Nanopartículas/química , Coloides/química
20.
J Virol ; 96(24): e0124522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36468859

RESUMO

The global spread of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the continuously emerging new variants underscore an urgent need for effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). Here, we screened several FDA-approved amphiphilic drugs and determined that sertraline (SRT) exhibits potent antiviral activity against infection of SARS-CoV-2 pseudovirus (PsV) and authentic virus in vitro. It effectively inhibits SARS-CoV-2 spike (S)-mediated cell-cell fusion. SRT targets the early stage of viral entry. It can bind to the S1 subunit of the S protein, especially the receptor binding domain (RBD), thus blocking S-hACE2 interaction and interfering with the proteolysis process of S protein. SRT is also effective against infection with SARS-CoV-2 PsV variants, including the newly emerging Omicron. The combination of SRT and other antivirals exhibits a strong synergistic effect against infection of SARS-CoV-2 PsV. The antiviral activity of SRT is independent of serotonin transporter expression. Moreover, SRT effectively inhibits infection of SARS-CoV-2 PsV and alleviates the inflammation process and lung pathological alterations in transduced mice in vivo. Therefore, SRT shows promise as a treatment option for COVID-19. IMPORTANCE The study shows SRT is an effective entry inhibitor against infection of SARS-CoV-2, which is currently prevalent globally. SRT targets the S protein of SARS-CoV-2 and is effective against a panel of SARS-CoV-2 variants. It also could be used in combination to prevent SARS-CoV-2 infection. More importantly, with long history of clinical use and proven safety, SRT might be particularly suitable to treat infection of SARS-CoV-2 in the central nervous system and optimized for treatment in older people, pregnant women, and COVID-19 patients with heart complications, which are associated with severity and mortality of COVID-19.


Assuntos
Antivirais , COVID-19 , SARS-CoV-2 , Sertralina , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Sertralina/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA