RESUMO
Aromatic essential oils have been shown to relieve anxiety and enhance relaxation, although the neural circuits underlying these effects have remained unknown. Here, it is found that treatment with 1.0% bergamot essential oil (BEO) exerts anxiolytic-like effects through a neural circuit projecting from the anterior olfactory nucleus (AON) to the anterior cingulate cortex (ACC) in acute restraint stress model mice. Collectively, in vivo two-photon calcium imaging, viral tracing, and whole-cell patch clamp recordings show that inhalation exposure to 1.0% BEO can activate glutamatergic projections from the AON to GABAergic neurons in the ACC, which drives inhibition of local glutamatergic neurons (AONGluâACCGABAâGlu). Optogenetic or chemogenetic manipulation of this pathway can recapitulate or abolish the BEO-induced anxiolytic-like behavioral effects in mice with ARS. Beyond depicting a previously unrecognized pathway involved in stress response, this study provides a circuit mechanism for the effects of BEO and suggests a potential target for anxiety treatment.
RESUMO
Liver failure encompasses a range of severe clinical syndromes resulting from the deterioration of liver function, triggered by factors both within and outside the liver. While the definition of acute-on-chronic liver failure (ACLF) may vary by region, it is universally recognized for its association with multiorgan failure, a robust inflammatory response, and high short-term mortality rates. Recent advances in metabolomics have provided insights into energy metabolism and metabolite alterations specific to ACLF. Additionally, immunometabolism is increasingly acknowledged as a pivotal mechanism in regulating immune cell functions. Therefore, understanding the energy metabolism pathways involved in ACLF and investigating how metabolite imbalances affect immune cell functionality are crucial for developing effective treatment strategies for ACLF. This review methodically examined the immune and metabolic states of ACLF patients and elucidated how alterations in metabolites impact immune functions, offering novel perspectives for immune regulation and therapeutic management of liver failure.
RESUMO
PURPOSE: Laryngoscopy is routinely used for suspicious vocal cord lesions with limited performance. Accumulated studies have demonstrated the bright prospect of deep learning in processing medical imaging. In this study, we perform a systematic review and meta-analysis to investigate diagnostic utility of deep learning in laryngoscopy. METHODS: The study was performed according to the Primary Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We comprehensively retrieved articles from the PubMed, Scopus, Embase, and Web of Science up to July 14, 2024. Eligible studies with application of deep learning algorithm in laryngoscopy were assessed and enrolled by two independent investigators. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio with 95% confidence intervals (CIs) were calculated using a random effects model. RESULTS: We retained 9 eligible studies adding up to 106,175 endoscopic images for the meta-analysis. The pooled sensitivity and specificity to diagnose laryngeal cancer were 0.95(95% CI: 0.85-0.98) and 0.96 (95% CI: 0.91-0.98). The area under the curve of deep learning was 0.99 (95%CI: 0.97-0.99). CONCLUSION: Deep learning demonstrated excellent diagnostic efficacy in assessing laryngeal cancer with laryngoscope images in current studies, which manifests its potential of aiding endoscopist for laryngeal cancer diagnosis and clinical decision making.
RESUMO
BACKGROUND: Z-Ligustilide (ZL) is an essential phthalide found in Ligusticum chuanxiong Hort, a commonly used traditional Chinese medicine for treating atherosclerosis (AS) clinically. ZL has been shown to be effective in treating AS. However, the underlying mechanism of ZL against AS and its potential targets remain elusive. PURPOSE: The purpose of this research was to assess the influence of ZL on AS and explore the role of the gut microbiome in mediating this effect. METHODS: A well-established AS mouse model, apolipoprotein E deficient (ApoE-/-) mice was used to examine the effects of ZL on AS, inflammation, and the intestinal barrier. To analyze the changes in gut microbial community, we employed the 16S rRNA gene sequencing. Antibiotic cocktail and fecal microbiota transplantation (FMT) were employed to clarify the contribution of the gut microbiota to the anti-AS effects of ZL. The mechanism through which ZL provided protective effects on AS and the intestinal barrier was explored by untargeted metabolomics, as well as by validating the involvement of cannabinoid receptor 2 (CB2R) in mice and Caco-2 cells. RESULTS: Oral administration of ZL inhibited the development of atherosclerotic lesions, improved plaque stability, inhibited the increase in serum and atherosclerotic inflammation, and improved intestinal barrier function. Fecal bacteria from ZL-treated mice induced similar beneficial effects on AS and the intestinal barrier. We used 16S RNA gene sequencing to reveal a significant increase in Rikenella abundance in both ZL-treated mice and ZL-FMT mice, which was associated with the beneficial effects of ZL. Further function prediction analysis of the gut microbiota and CB2R antagonist intervention experiment in mice and Caco-2 cells showed that the activation of CB2R resulted in the enhancement of the intestinal barrier by ZL. Furthermore, the analysis of metabolomic profiling revealed the enrichment of capsaicin upon ZL treatment, which induced the activation of CB2R in human colon epithelial cells. CONCLUSION: Our study is the first to demonstrate that oral treatment with ZL has the potential to alleviate AS by reducing inflammation levels and enhancing the intestinal barrier function. This mechanism relies on the gut microbiota in a CB2R-dependent manner, suggesting promising strategies and ideas for managing AS. This study provides insights into a novel mechanism for treating AS with ZL.
RESUMO
Planar tetracoordinate fluorine (ptF) species are very exotic and scarce due to high electronegativity of fluorine. Herein we report the ternary square ptF cluster, D4h FK4H4-, which is composed of a F center, a square K4 ring, and four outer H bridges. It is a true global minimum (GM) structure and possesses good dynamic stability. Bonding analyses indicate that there are four lone pairs for the central F atom, along with four K-H-K three-center two-electron (3c-2e) σ bonds for the peripheral K4H4 ligand ring. The stability of ptF is dominated by multicenter ionic bonds rather than the supposed σ aromaticity of the system. Excitingly, it is a pseudohalogen anion with the VDE 3.57 eV at the CCSD(T) level. The merge of ptF with pseudohalogen anion character makes the FK4H4- cluster an exotic species, which will motivate theoretical and experimental studies on novel ptF species as well as superhalogens.
RESUMO
Objectives: Death anxiety is feelings of worry and fear regarding death. This study explored the effect of number of chronic conditions on death anxiety in older adults and the moderating effect of age. Methods: This study used the fifth, sixth, seventh, and eighth waves of longitudinal data (2012-2021) collected in Anhui, China (5014 person-year observations). A mixed linear model was used to examine the effect of number of chronic conditions on death anxiety and the moderating effect of age. Results: The number of chronic conditions showed an inverted U-shaped relationship with death anxiety, with death anxiety being lower in older adults with older age. As age increased, the U-shaped curve became flatter, and the extremes shifted to the right. Discussion: Particular attention should be given to younger older adults with chronic conditions to help them recover earlier from the negative impact by providing information and counseling about their chronic conditions.
RESUMO
There is limited research on the relationship between membrane fouling and microbial metabolites in the nitrogen removal process coupled with membrane bioreactors (MBRs). In this study, we compared anoxic-oxic (AO) and partial nitritation-anammox (PNA), which were selected as representative heterotrophic and autotrophic biological nitrogen removal-coupled MBR processes for their fouling behavior. At the same nitrogen loading rate of 100 mg/L and mixed liquor suspended solids (MLSS) concentration of 4000 mg/L, PNA-MBR exhibited more severe membrane fouling compared to AO-MBR, as evidenced by monitoring changes in transmembrane pressure (TMP). In the autotrophic nitrogen removal process, without added organic carbon, the supernatant of PNA-MBR had higher concentrations of protein, polysaccharides, and low-molecular-weight humic substances, leading to a rapid flux decline. Extracellular polymeric substances (EPS) extracted from suspended sludge and cake sludge in PNA-MBR also contributed to more severe membrane fouling than in AO-MBR. The EPS subfractions of PNA-MBR exhibited looser secondary structures in protein and stronger surface hydrophobicity, particularly in the cake sludge, which contained higher contents of humic substances with lower molecular weights. The higher abundances of Candidatus Brocadia and Chloroflexi in PNA-MBR could lead to the production of more hydrophobic organics and humic substances. Hydrophobic metabolism products as well as anammox bacteria were deposited on the hydrophobic membrane surface and formed serious fouling. Therefore, hydrophilic membrane modification is more urgently needed to mitigate membrane fouling when running PNA-MBR than AO-MBR.
RESUMO
Ligusticum sinense cv. Chuanxiong (L. Chuanxiong), one of the widely used traditional Chinese medicines (TCM), is currently facing the problem of excessive cadmium (Cd) content. This problem has significantly affected the quality and safety of L. Chuanxiong and become a vital factor restricting its clinical application and international trade development. Currently, to solve the problem of excessive Cd, it is essential to research the response mechanisms of L. Chuanxiong to Cd stress. However, there are few reports on its physiological and biochemical responses under Cd stress. In this study, we conducted the hydroponic experiment under 25 µM Cd stress, based on the Cd content of the genuine producing areas soil. The results showed that 25 µM Cd stress not only had no significant inhibitory effect on the growth of L. Chuanxiong seedlings but also significantly increased the chlorophyll a content (11.79%) and root activity (51.82%) compared with that of the control, which might be a hormesis effect. Further results showed that the absorption and assimilation of NH4+ increased in seedlings under 25 µM Cd stress, which was associated with high photosynthetic pigments. Here, we initially hypothesized and confirmed that Cd exceedance in the root system of L. Chuanxiong was due to the thickening of the root cell wall, changes in the content of the cell wall components, and chelation of Cd by GSH. There was an increase in cell wall thickness (57.64 %) and a significant increase in cellulose (25.48%) content of roots under 25 µM Cd stress. In addition, L. Chuanxiong reduced oxidative stress caused by 25 µM Cd stress mainly through the GSH/GSSG cycle. Among them, GSH-Px (48.26%) and GR (42.64%) activities were significantly increased, thereby maintaining a high GSH/GSSG ratio. This study preliminarily reveals the response of L. Chuanxiong to Cd stress and the mechanism of Cd enrichment. It provides a theoretical basis for solving the problem of Cd excessive in L. Chuanxiong.
RESUMO
BACKGROUND: Previous research has examined the associations of preschoolers' 24-h movement behaviours, including light and moderate-to-vigorous physical activity (LPA and MVPA), sedentary behaviour (SB), sleep, with physical fitness in isolation, ignoring intrinsically compositional nature of movement data while increasing the risk of collinearity. Thus, this study investigated the associations of preschoolers' 24-h Movement behaviours composition with physical fitness, estimated changes in physical fitness when time was reallocated between movement behaviours composition, and determined whether associations differ between different genders, using compositional data analysis. METHODS: In the cross-sectional study, a total of 275 preschoolers (3 ~ 6 y) from China were included. SB, LPA and MVPA times were objectively monitored with an ActiGraph GT9X accelerometer for 7 consecutive days. Sleep duration was obtained using parental reports. Physical fitness parameters, including upper and lower limb strength, static balance, speed-agility, and cardiorespiratory fitness (CRF), were determined with the PREFIT battery. The associations of 24-h movement behaviours composition with each physical fitness parameter were examined employing compositional multivariable linear regression models. The changes following time reallocation among behaviours were estimated employing compositional isotemporal substitution analyses. RESULTS: Greater MVPA, but not LPA, was significantly related to better upper and lower limb strength, speed-agility, and CRF. Reallocating time from LPA or SB to MVPA was related to better physical fitness. The associations were non-symmetrical: the estimated detriments to physical fitness from replacing MVPA with LPA or SB were larger than the estimated benefits associated with adding MVPA of the same magnitude. The aforementioned associations with lower limb strength, CRF, and speed-agility were observed in boys, while associations with upper and lower limb strength were noted in girls. CONCLUSION: Our findings reinforce the importance of physical activity (PA) intensity for the development of physical fitness in preschoolers. Replacing LPA or SB time with MVPA may be an appropriate strategy for enhancing preschoolers' physical fitness.
Assuntos
Exercício Físico , Aptidão Física , Comportamento Sedentário , Humanos , Masculino , Feminino , Pré-Escolar , Estudos Transversais , Exercício Físico/fisiologia , Aptidão Física/fisiologia , China , Criança , Acelerometria , Fatores de Tempo , Análise de Dados , Sono/fisiologiaRESUMO
BACKGROUND: As a heterogeneous and life-threatening disease, the pathogenesis of acute liver failure (ALF) is complex. Our previous study has shown that IDH1/MDH1 deacetylation promotes ALF by regulating NETosis (a novel mode of cell death). In this article, we explore the manners of IDH1/MDH1 deacetylation regulates NETosis. METHODS: In vitro experiments, the formation of NETs was detected by immunofluorescence staining and Western blotting. LC3 fluorescence staining was used to detect autophagosome formation. To observe mitochondrial morphology, cells were stained by Mito-Tracker Red. Western blotting was used to detect the levels of autophagy protein and mitochondrial dynamin. In vivo experiments, the ALF model in mouse was established with LPS/D-gal, and the formation of NETs was detected by immunofluorescence staining and Western blotting. The autophagy levels were detected by Western blotting in liver samples. RESULTS: In dHL-60 cells, Western blotting results showed that the expression of OPA1 was higher in the IDH1/MDH1 deacetylated group compared with the IDH1/MDH1 WT group. And histone deacetylase inhibitor 6 (HDAC6i, ACY1215) decreased the expression level of OPA1 in IDH1/MDH1 deacetylated group. IDH1/MDH1 deacetylation increased the expression levels of both LC3B-II and Beclin 1, while decreasing the expression level of P62. It was reversed by ACY1215. Combined with our previous experiments, IDH1/MDH1 deacetylation upregulated autophagy concomitant with the increased expression of the markers of NETs formation. In a mouse model of ALF, ACY1215 further decreased the expression levels of LC3B-II and Beclin 1, while increasing the expression level of P62 in IDH1/MDH1 deacetylated mice. CONCLUSIONS: IDH1/MDH1 deacetylation promoted NETosis by regulating autophagy and OPA1 in vitro. The regulation of neutrophil autophagy on NETosis during IDH1/MDH1 deacetylation might be masked in mice. ACY1215 might attenuate NETosis by regulating neutrophil autophagy, which alleviated ALF aggravated by IDH1/MDH1 deacetylation.
Assuntos
Autofagia , GTP Fosfo-Hidrolases , Isocitrato Desidrogenase , Animais , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Camundongos , Acetilação , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Humanos , Armadilhas Extracelulares/metabolismo , Camundongos Endogâmicos C57BL , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Masculino , Modelos Animais de Doenças , Linhagem Celular , Neutrófilos/imunologia , Fígado/metabolismo , Fígado/patologiaRESUMO
Background: Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract worldwide. Both environmental and genetic factors contribute to the occurrence and development of GC. Surgery and chemotherapy are the main treatment modalities for gastric cancer; however, some patients show insensitivity to chemotherapeutic agents. Chemotherapy resistance is one of the primary reasons for poor treatment outcomes and the high likelihood of recurrence and metastasis in gastric cancer patients. Numerous studies have confirmed a correlation between the dysregulation of microRNA expression and the development of various malignant tumors, as well as their resistance to chemotherapeutic agents. However, the role of microRNA-582-3p in gastric cancer cells and its mechanism in the resistance of gastric cancer cells to oxaliplatin have not been studied. Methods: We first used q-PCR, CCK8, transwell, and scratch assays to validate the expression of microRNA-582-3p in gastric cancer tissues and cells, while also analyzing the relationship between its expression levels and the clinical pathological data of patients. Additionally, we further confirmed the impact of microRNA-582-3p on gastric cancer cell progression and oxaliplatin resistance through knockdown and overexpression experiments. Subsequently, to explore the specific mechanisms of microRNA-582-3p in gastric cancer, we verified the downstream target of microRNA-582-3p, ATG7, using dual-luciferase reporter assays and examined the effect of ATG7 on gastric cancer cell functions. Moreover, we conducted rescue experiments to further validate the interaction between microRNA-582-3p and ATG7. Results: Our experimental results confirmed that microRNA-582-3p is lowly expressed in gastric cancer tissues and cells, and the expression level of miR-582-5p is correlated with the T stage of patients, while showing no correlation with the patients' gender, age, tumor size, degree of differentiation, or N stage. Additionally, we found that microRNA-582-3p functions as a tumor suppressor in gastric cancer cells, as its overexpression inhibits the biological functions of gastric cancer cells and increases their sensitivity to oxaliplatin. Furthermore, we identified binding sites between microRNA-582-3p and the autophagy-related gene ATG7, observing that knockdown of microRNA-582-3p increases ATG7 expression, while its overexpression reduces ATG7 levels. Moreover, ATG7 is overexpressed in gastric cancer cells; knockdown of ATG7 inhibits the biological functions of gastric cancer cells and increases their sensitivity to oxaliplatin, whereas overexpression of ATG7 reverses the inhibitory effect of miR-582-5p on gastric cancer. Conclusion: Our study confirms that microRNA-582-3p acts as a tumor suppressor in gastric cancer cells, and its role may be mediated through the regulation of ATG7 expression levels. MicroRNA-582-3p may serve as a potential target for gastric cancer treatment and a predictive biomarker.
RESUMO
The high dimensionality and noise challenges in genomic data make it difficult for traditional clustering methods. Existing multi-kernel clustering methods aim to improve the quality of the affinity matrix by learning a set of base kernels, thereby enhancing clustering performance. However, directly learning from the original base kernels presents challenges in handling errors and redundancies when dealing with high-dimensional data, and there is still a lack of feasible multi-kernel fusion strategies. To address these issues, we propose a Multi-Kernel Clustering method with Tensor fusion on Grassmann manifolds, called MKCTM. Specifically, we maximize the clustering consensus among base kernels by imposing tensor low-rank constraints to eliminate noise and redundancy. Unlike traditional kernel fusion approaches, our method fuses learned base kernels on the Grassmann manifold, resulting in a final consensus matrix for clustering. We integrate tensor learning and fusion processes into a unified optimization model and propose an effective iterative optimization algorithm for solving it. Experimental results on ten datasets, comparing against 12 popular baseline clustering methods, confirm the superiority of our approach. Our code is available at https://github.com/foureverfei/MKCTM.git.
Assuntos
Algoritmos , Genômica , Genômica/métodos , Análise por Conglomerados , Humanos , SoftwareRESUMO
Manganese/nickel-based layered transition metal oxides have caught the attention of studies as promising cathodes for sodium-ion batteries (SIBs). It is reported that utilizing both cationic and anionic redox reactions is a promising method for higher energy density cathodes. However, the anionic redox reaction comes at the expense of irreversible oxygen release. Hence, a Li-Mg cosubstituted P2-Na0.67Li0.07Mg0.07Ni0.28Mn0.58O2 material with a honeycomb-ordered superstructure was designed. The Ni3+/Ni4+ redox couple and the anionic redox reaction are proven to have a competitive relationship. Density functional theory calculations reveal the effect of O 2p nonbonding states from Li and prove that Mg-O bonds can stabilize the Ni-O eg states. In situ electrochemical impedance spectroscopy measurements and galvanostatic charging/discharging derived dV/dQ, representing resistance changes with time, are obtained to reveal the mechanism of the anionic redox reaction. This study presents the effect and mechanism of the O 2p nonbonding state and Mg-O bonds of manganese/nickel-based layered oxides.
RESUMO
BACKGROUND: This study aimed to investigate the facial soft tissue characteristics of patients with different types of malocclusion. METHODS: The 3dMD scanning data of patients with malocclusion admitted to our hospital from January 2018 to April 2022 were analyzed retrospectively. Forty-seven patients with Class I malocclusion, 43 patients with Class II malocclusion and 44 patients with Class III malocclusion were selected. All patients underwent 3dMD scans prior to orthodontic treatment. Then the differences in the 3D morphological parameters of the facial soft tissues were compared between different sexes and different types of malocclusion. Spearman's correlation was further used to analyze the correlation between each parameter and the classification of malocclusion. RESULTS: In the Class I group and Class II group, there were no significant differences in the 3D morphometric parameters of malocclusion patients of different sexes (P > 0.05). There were significant differences between Al (R)-AL (L), Ac (R)-Ac (L), Prn-Ac (L), n-Prn-Sn, and Al (R)-Al (L)/Ac (L)-Ah (L) values among the three groups of patients. Spearman correlation analysis showed that Ac (R)-Ac (L) and Al (R)-Al (L)/Ac (R)-Ac (L) were correlated with the type of malocclusion. CONCLUSION: Differences in facial soft tissues exist in patients with Class I, II, and III malocclusion. 3dMD technique may be helpful in developing an effective treatment plan prior to orthodontic treatment.
Assuntos
Face , Má Oclusão , Humanos , Masculino , Feminino , Face/anatomia & histologia , Face/diagnóstico por imagem , Estudos Retrospectivos , Má Oclusão/classificação , Má Oclusão/diagnóstico por imagem , Má Oclusão/patologia , Adolescente , Imageamento Tridimensional/métodos , Adulto Jovem , Fatores Sexuais , Adulto , Má Oclusão Classe III de Angle/diagnóstico por imagem , Má Oclusão Classe III de Angle/patologia , Má Oclusão Classe II de Angle/diagnóstico por imagem , Má Oclusão Classe II de Angle/patologia , Má Oclusão Classe II de Angle/terapiaRESUMO
Euarthropods are an extremely diverse phylum in the modern, and have been since their origination in the early Palaeozoic. They grow through moulting the exoskeleton (ecdysis) facilitated by breaking along lines of weakness (sutures). Artiopodans, a group that includes trilobites and their non-biomineralizing relatives, dominated arthropod diversity in benthic communities during the Palaeozoic. Most trilobites - a hyperdiverse group of tens of thousands of species - moult by breaking the exoskeleton along cephalic sutures, a strategy that has contributed to their high diversity during the Palaeozoic. However, the recent description of similar sutures in early diverging non-trilobite artiopodans means that it is unclear whether these sutures evolved deep within Artiopoda, or convergently appeared multiple times within the group. Here, we describe new well-preserved material of Acanthomeridion, a putative early diverging artiopodan, including hitherto unknown details of its ventral anatomy and appendages revealed through CT scanning, highlighting additional possible homologous features between the ventral plates of this taxon and trilobite free cheeks. We used three coding strategies treating ventral plates as homologous to trilobite-free cheeks, to trilobite cephalic doublure, or independently derived. If ventral plates are considered homologous to free cheeks, Acanthomeridion is recovered sister to trilobites, however, dorsal ecdysial sutures are still recovered at many places within Artiopoda. If ventral plates are considered homologous to doublure or non-homologous, then Acanthomeridion is not recovered as sister to trilobites, and thus the ventral plates represent a distinct feature to trilobite doublure/free cheeks.
Assuntos
Artrópodes , Evolução Biológica , Fósseis , Animais , Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Filogenia , MudaRESUMO
Background/Objectives: Neutrophils, as the first line of defense in the immune response, produce neutrophil extracellular traps (NETs) upon activation, which are significant in the pathogenesis and organ damage in sepsis. This study aims to explore the clinical value of myeloperoxidase-DNA (MPO-DNA) and cell-free DNA (cf-DNA) in sepsis patients. Methods: Clinical data were collected from 106 sepsis patients, 25 non-sepsis patients, and 51 healthy controls. Sequential Organ Failure Assessment (SOFA) scores were calculated, and levels of MPO-DNA) complexes and cf-DNA were measured using specific kits. Correlation analyses assessed relationships between indicators, while logistic regression identified independent risk factors. Receiver operating characteristic (ROC) curves calculated the area under the curve (AUC) to evaluate the diagnostic value of the biomarkers. Results: Sepsis patients exhibited significantly elevated levels of MPO-DNA and cf-DNA compared to non-sepsis patients and healthy controls. In sepsis patients, MPO-DNA and cf-DNA levels correlated with inflammation, coagulation, and organ damage indicators, as well as procalcitonin (PCT) levels and SOFA scores. Both C-reactive protein (CRP) and cf-DNA were identified as independent risk factors for sepsis, demonstrating moderate diagnostic value. ROC analysis showed that the combination of MPO-DNA and CRP (AUC: 0.837) enhances the AUC value of CRP (0.777). Conclusions: In summary, elevated serum levels of MPO-DNA and cf-DNA in sepsis patients correlate with SOFA scores and PCT levels, providing reference value for sepsis diagnosis in clinical settings.
RESUMO
Messenger RNA modifications play pivotal roles in RNA biology, but comprehensive landscape changes of epitranscriptomes remain largely unknown in plant immune response. Here we report translational reprogramming directed by ac4C mRNA modification upon pathogen challenge. We first investigate the dynamics of translatomes and epitranscriptomes and uncover that the change in ac4C at single-base resolution promotes translational reprogramming upon Magnaporthe oryzae infection. Then by characterizing the specific distributions of m1A, 2'O-Nm, ac4C, m5C, m6A and m7G, we find that ac4Cs, unlike other modifications, are enriched at the 3rd position of codons, which stabilizes the Watson-Crick base pairing. Importantly, we demonstrate that upon pathogen infection, the increased expression of the ac4C writer OsNAT10/OsACYR (N-ACETYLTRANSFERASE FOR CYTIDINE IN RNA) promotes translation to facilitate rapid activation of immune responses, including the enhancement of jasmonic acid biosynthesis. Our study provides an atlas of mRNA modifications and insights into ac4C function in plant immunity.
Assuntos
Oryza , Doenças das Plantas , Oryza/genética , Oryza/microbiologia , Oryza/imunologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Biossíntese de Proteínas/genética , Regulação da Expressão Gênica de Plantas , Epigênese Genética , Imunidade Vegetal/genética , AscomicetosRESUMO
Boron-based clusters containing planar tetracoordinate carbon (ptC) are unique and scarce. Isoelectronic-replacing after proper vulcanization is an effective strategy to obtain the ptC based on the B12 cluster. Herein we report computational evidence for a ternary CB11S3+ (C2v, 1A1) cluster, which possesses a concentric double-triangle structure containing one ptC atom at the peripheral edge. The unbiased structural explorations of potential energy surfaces and high-level CCSD(T) calculations indicate that the ptC CB11S3+ cluster is a true global minimum. Born-Oppenheimer molecular dynamics (BOMD) simulations reveal that it is dynamically stable against isomerization and decomposition. Chemical bonding analysis reveals that three delocalized π bonds endow the π aromaticity to the CB11 unit of CB11S3+. In addition, the strong S â B π back-bonding is also conducive to the stability of CB11S3+. The current findings offer opportunities for further boron-based ptC clusters.
RESUMO
The vocal fold is an architecturally complex organ comprising a heterogeneous mixture of various layers of individual epithelial and mesenchymal cell lineages. Here we performed single-cell RNA sequencing profiling of 5836 cells from the vocal folds of adult Sprague-Dawley rats. Combined with immunostaining, we generated a spatial and transcriptional map of the vocal fold cells and characterized the subpopulations of epithelial cells, mesenchymal cells, endothelial cells, and immune cells. We also identified a novel epithelial-to-mesenchymal transition-associated epithelial cell subset that was mainly found in the basal epithelial layers. We further confirmed that this subset acts as intermediate cells with similar genetic features to epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Finally, we present the complex intracellular communication network involved homeostasis using CellChat analysis. These studies define the cellular and molecular framework of the biology and pathology of the VF mucosa and reveal the functional importance of developmental pathways in pathological states in cancer.
RESUMO
Algae play critical roles in the carbon dioxide (CO2) exchange between the water bodies and the atmosphere. However, the effects of prokaryotic and eukaryotic algae on carbon utilization, CO2 flux, and the underlying mechanisms remain poorly understood. Therefore, this study investigated the differences in carbon preferences and CO2 fluxes under different algal dominance days. Our research revealed that dissolved inorganic carbon (DIC) concentration fluctuations had a limited effect on the relative abundance of algae. However, shifts in dominant algal phyla induced changes in DIC, with Cyanobacteria preferring HCO3- and Chlorophyta preferring CO2. Analysis of the water chemistry balance indicated that the growth of Chlorophyta had a 15.59 times greater effect on CO2 sinks compared with that of Cyanobacteria. During the Cyanobacteria dominance days, the lower DIC concentration did not result in a reduction in CO2 emissions. However, increases in the dissolved organic carbon concentration provided a favorable environment for Cyanobacteria, which promoted CO2 emissions. The CCM model indicated that the growth of Chlorophyta resulted in CO2 uptake rates at least 3.57 times higher and CO2 leakage rates up to 0.97 times lower compared to Cyanobacteria, accelerating CO2 transport into the cell. Overall, CO2 sink was stronger on Chlorophyta dominance days than on Cyanobacteria dominance days. This study emphasized the influence of algal phyla on CO2 fluxes, revealing the significant CO2 sink associated with Chlorophyta. Further research should investigate how to manipulate environmental factors to favor Chlorophyta growth and effectively reduce CO2 emissions.