Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474066

RESUMO

Planar tetracoordinate silicon, germanium, tin, and lead (ptSi/Ge/Sn/Pb) species are scarce and exotic. Here, we report a series of penta-atomic ptSi/Ge/Sn/Pb XB2Bi2 (X = Si, Ge, Sn, Pb) clusters with 20 valence electrons (VEs). Ternary XB2Bi2 (X = Si, Ge, Sn, Pb) clusters possess beautiful fan-shaped structures, with a Bi-B-B-Bi chain surrounding the central X core. The unbiased density functional theory (DFT) searches and high-level CCSD(T) calculations reveal that these ptSi/Ge/Sn/Pb species are the global minima on their potential energy surfaces. Born-Oppenheimer molecular dynamics (BOMD) simulations indicate that XB2Bi2 (X = Si, Ge, Sn, Pb) clusters are robust. Bonding analyses indicate that 20 VEs are perfect for the ptX XB2Bi2 (X = Si, Ge, Sn, Pb): two lone pairs of Bi atoms; one 5c-2e π, and three σ bonds (two Bi-X 2c-2e and one B-X-B 3c-2e bonds) between the ligands and X atom; three 2c-2e σ bonds and one delocalized 4c-2e π bond between the ligands. The ptSi/Ge/Sn/Pb XB2Bi2 (X = Si, Ge, Sn, Pb) clusters possess 2π/2σ double aromaticity, according to the (4n + 2) Hückel rule.


Assuntos
Tetranitrato de Pentaeritritol , Rubiaceae , Gravidez , Feminino , Humanos , Elétrons , Chumbo , Simulação de Dinâmica Molecular , Parto
2.
Nanoscale ; 16(9): 4778-4786, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38305072

RESUMO

It is highly challenging to control (stop and resume as needed) molecular rotors because their intramolecular rotations are electronically enabled by delocalized σ bonding, and the desired control needs to be able to destroy and restore such σ bonding, which usually means difficult chemical manipulation (substitution or doping atom). In this work, we report CBe4H6, a molecular rotor that can be controlled independently of chemical manipulation. This molecule exhibited the uninterrupted free rotation of Be and H atoms around the central carbon in first-principles molecular dynamics simulations at high temperatures (600 and 1000 K), but the rotation cannot be witnessed in the simulation at room temperature (298 K). Specifically, when a C-H bond in the CBe4H6 molecule adopts the equatorial configuration at 298 K, it destroys the central delocalized σ bonding and blocks the intramolecular rotation (the rotor is turned "OFF"); when it can adopt the axial configuration at 600 and 1000 K, the central delocalized σ bonding can be restored and the intramolecular rotation can be resumed (the rotor is turned "ON"). Neutral CBe4H6 is thermodynamically favorable and electronically stable, as reflected by a wide HOMO-LUMO gap of 7.99 eV, a high vertical detachment energy of 9.79 eV, and a positive electron affinity of 0.24 eV, so it may be stable enough for the synthesis, not only in the gas phase, but also in the condensed phase.

3.
Chem Commun (Camb) ; 60(10): 1341-1344, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197330

RESUMO

Replacing one of the peripheral Se with a Se2 bridge is an effective strategy to flatten the C4v CB4Se4 cluster. The global minimum of CB4Se5 contains one fan-shaped planar tetracoordinate carbon (ptC) CB4 core, possessing double 2π + 6σ aromaticity. The peripheral Se2 bridge is dexterous and crucial for the stability of CB4Se5.

4.
Phys Chem Chem Phys ; 26(7): 6049-6057, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295372

RESUMO

Boron-based complex clusters are a fertile ground for the exploration of exotic chemical bonding and dynamic structural fluxionality. Here we report on the computational design of a ternary MgTa2B6 cluster via global structural searches and quantum chemical calculations. The cluster turns out to be a new member of the molecular rotor family, closely mimicking a turning clock at the subnanoscale. It is composed of a hexagonal B6 ring with a capping Ta atom at the top and bottom, whereas the Mg atom is linked to one Ta site as a radial Ta-Mg dimer. These components serve as the dial, axis, and hand of a nanoclock, respectively. Chemical bonding analyses reveal that the inverse sandwich Ta2B6 motif in the cluster features 6π/6σ double aromaticity, whose electron counting conforms to the (4n + 2) Hückel rule. The Ta-Mg dimer has a Lewis-type σ bond, and the Mg site has negligible bonding with B6 ring. The ternary cluster can be formulated as an [Mg]0[Ta2B6]0 complex. Molecular dynamics simulations suggest that the cluster is structurally fluxional analogous to a nanoclock, even at a low temperature of 100 K. The Ta-Mg hand turns almost freely around the Ta2 axis and along the B6 dial. The tiny intramolecular rotation barrier is less than 0.3 kcal mol-1, being dictated by the bonding nature of double 6π/6σ aromaticity. The present system offers a new type of molecular rotor in physical chemistry.

5.
Phys Chem Chem Phys ; 25(39): 26443-26454, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37740349

RESUMO

Boron-based nanoclusters show unique geometric structures, nonclassical chemical bonding, and dynamic structural fluxionality. We report here on the theoretical prediction of a binary Pd3B26 cluster, which is composed of a triangular Pd3 core and a tubular double-ring B26 unit in a coaxial fashion, as identified through global structural searches and electronic structure calculations. Molecular dynamics simulations indicate that in the core-shell alloy cluster, the B26 double-ring unit can rotate freely around its Pd3 core at room temperature and beyond. The intramolecular rotation is virtually barrier free, thus giving rise to an antifriction bearing system (or ball bearing) at the nanoscale. The dimension of the dynamic system is only 0.66 nm. Chemical bonding analysis reveals that Pd3B26 cluster possesses double 14π/14σ aromaticity, following the (4n + 2) Hückel rule. Among 54 pairs of valence electrons in the cluster, the overwhelming majority are spatially isolated from each other and situated on either the B26 tube or the Pd3 core. Only one pair of electrons are primarily responsible for chemical bonding between the tube and the core, which greatly weaken the bonding within the Pd3 core and offers structural flexibility. This is a key mechanism that effectively diminishes the intramolecular rotation barrier and facilitates dynamic structural fluxionality of the system. The current work enriches the field of nanorotors and nanomachines.

6.
Molecules ; 28(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513457

RESUMO

As one of the important probes of chemical bonding, planar tetracoordinate carbon (ptC) compounds have been receiving much attention. Compared with ptC clusters, the heavier planar tetracoordinate silicon, germanium, tin, lead (ptSi/Ge/Sn/Pb) systems are scarcer and more exotic. The 18-valence-electron (ve)-counting is one important guide, though not the only rule, for the design of planar tetra-, penta-coordinate carbon and silicon clusters. The 18ve ptSi/Ge system is very scarce and needs to be expanded. Based on the isoelectronic principle and bonding similarity between the Al atom and the BeH unit, inspired by the previously reported ptSi global minimum (GM) SiAl42-, a series of ternary 18 ve XBe4H5- (X = Si, Ge, Sn, Pb) clusters were predicted with the ptSi/Ge/Sn/Pb centers. Extensive density functional theory (DFT) global minimum searches and high-level CCSD(T) calculations performed herein indicated that these ptSi/Ge/Sn/Pb XBe4H5- (X = Si, Ge, Sn, Pb) clusters were all true GMs on their potential energy surfaces. These GMs of XBe4H5- (X = Si, Ge, Sn, Pb) species possessed the beautiful fan-shaped structures: XBe4 unit can be stabilized by three peripheries bridging H and two terminal H atoms. It should be noted that XBe4H5- (X = Si, Ge, Sn, Pb) were the first ternary 18 ve ptSi/Ge/Sn/Pb species. The natural bond orbital (NBO), canonical molecular orbitals (CMOs) and adaptive natural densitpartitioning (AdNDP) analyses indicated that 18ve are ideal for these ptX clusters: delocalized one π and three σ bonds for the XBe4 core, three Be-H-Be 3c-2e and two Be-H σ bonds for the periphery. Additionally, 2π plus 6σ double aromaticity was found to be crucial for the stability of the ptX XBe4H5- (X = Si, Ge, Sn, Pb) clusters. The simulated photoelectron spectra of XBe4H5- (X = Si, Ge, Sn, Pb) clusters will provide theoretical basis for further experimental characterization.

7.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050043

RESUMO

Planar tetracoordinate carbon (ptC) species are scarce and exotic. Introducing four peripheral Te/Po auxiliary atoms is an effective strategy to flatten the tetrahedral structure of CAl4 (Td, 1A1). Neutral CAl4X4 (X = Te, Po) clusters possess quadrangular star structures containing perfect ptC centers. Unbiased density functional theory (DFT) searches and high-level CCSD(T) calculations suggest that these ptC species are the global minima on the potential energy surfaces. Bonding analyses indicate that 40 valence-electron (VE) is ideal for the ptC CAl4X4 (X = Te, Po): one delocalized π and three σ bonds for the CAl4 core; four lone pairs (LPs) of four X atoms, eight localized Al-X σ bonds, and four delocalized Al-X-Al π bonds for the periphery. Thus, the ptC CAl4X4 (X = Te, Po) clusters possess the stable eight electron structures and 2π + 6σ double aromaticity. Born-Oppenheimer molecular dynamics (BOMD) simulations indicate that neutral ptC CAl4X4 (X = Te, Po) clusters are robust.

8.
Chem Commun (Camb) ; 59(33): 4966-4969, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37014699

RESUMO

In this work, we analyzed the bonding and fluxional character of the global minimum of CAl11-. Its structure is formed by two stacked layers, one of them resembles the well-known planar tetracoordinate carbon CAl4 on top of a hexagonal Al@Al6 wheel. Our results show that the CAl4 fragment rotates freely around the central axis. The exceptional stability and fluxionality of CAl11- derive from its particular electron distribution.

9.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770609

RESUMO

Hypercoordinate transition-metal species are mainly dominated by the 18-valence-electron (18ve) counting. Herein, we report ternary MAl6S6 (M = Ni, Pd, Pt) clusters with the planar hexacoordinate metal (phM) centers, which feature 16ve counting instead of the classic 18ve rule. These global-minimum clusters are established via unbiased global searches, followed by PBE0 and single-point CCSD(T) calculations. The phM MAl6 units are stabilized by six peripheral bridging S atoms in these star-like species. Chemical bonding analyses reveal that there are 10 delocalized electrons around the phM center, which can render the aromaticity according to the (4n + 2) Hückel rule. It is worth noting that adding an (or two) electron(s) to its π-type lowest unoccupied molecular orbital (LUMO) will make the system unstable.

10.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364234

RESUMO

We systematically explore the potential energy surface of the B3Al4+ combination of atoms. The putative global minimum corresponds to a structure formed by an Al4 square facing a B3 triangle. Interestingly, the dynamical behavior can be described as a Reuleaux molecular triangle since it involves the rotation of the B3 triangle at the top of the Al4 square. The molecular dynamics simulations, corroborating with the very small rotational barriers of the B3 triangle, show its nearly free rotation on the Al4 ring, confirming the fluxional character of the cluster. Moreover, while the chemical bonding analysis suggests that the multicenter interaction between the two fragments determines its fluxionality, the magnetic response analysis reveals this cluster as a true and fully three-dimensional aromatic system.


Assuntos
Simulação de Dinâmica Molecular
11.
Chem Sci ; 13(27): 8045-8051, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35919428

RESUMO

The occurrence of planar hexacoordination is very rare in main group elements. We report here a class of clusters containing a planar hexacoordinate silicon (phSi) atom with the formula SiSb3M3 + (M = Ca, Sr, Ba), which have D 3h (1A1') symmetry in their global minimum structure. The unique ability of heavier alkaline-earth atoms to use their vacant d atomic orbitals in bonding effectively stabilizes the peripheral ring and is responsible for covalent interaction with the Si center. Although the interaction between Si and Sb is significantly stronger than the Si-M one, sizable stabilization energies (-27.4 to -35.4 kcal mol-1) also originated from the combined electrostatic and covalent attraction between Si and M centers. The lighter homologues, SiE3M3 + (E = N, P, As; M = Ca, Sr, Ba) clusters, also possess similar D 3h symmetric structures as the global minima. However, the repulsive electrostatic interaction between Si and M dominates over covalent attraction making the Si-M contacts repulsive in nature. Most interestingly, the planarity of the phSi core and the attractive nature of all the six contacts of phSi are maintained in N-heterocyclic carbene (NHC) and benzene (Bz) bound SiSb3M3(NHC)6 + and SiSb3M3(Bz)6 + (M = Ca, Sr, Ba) complexes. Therefore, bare and ligand-protected SiSb3M3 + clusters are suitable candidates for gas-phase detection and large-scale synthesis, respectively.

12.
J Mol Model ; 28(8): 230, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881274

RESUMO

18-valence-electron (ve) rule is one important guide for us to design planar tetracoordinate carbon (ptC) species. Using the "polarization of ligands" strategy, the new pentaatomic ptC species CE2Ba2 (E = As, Sb) with 18 ve are designed in this work. Computer structural searches and high-level calculations reveal that the ptC CE2Ba2 (E = As, Sb) species are global minima (GMs) on the potential energy surfaces, whose C center is coordinated by the interspaced E and Ba atoms. CE2Ba2 (E = As, Sb) are also kinetically stable. Chemical bonding analyses reveal that the ptC core is stabilized by two localized C-E σ bonds, one delocalized five-center two-electron (5c-2e) σ bond and one delocalized 5c-2e π bond. One π and three σ bonds collectively conform to the 8-electron counting, which determines the stability of ptC CE2Ba2 (E = As, Sb) species. Interestingly, the delocalized 2π and 2σ electrons render the ptC systems π/σ double aromaticity. Additional 10 electrons contribute to peripheral lone pairs of E and E-Ba bonding.

13.
Front Chem ; 10: 868782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464225

RESUMO

Boron oxide clusters have structural richness and exotic chemical bonding. We report a quantum chemical study on the binary B5O6 - cluster, which is relatively oxygen-rich. A global structural search reveals planar C 2v (1A1) geometry as the global minimum structure, featuring a heteroatomic hexagonal B3O3 ring as its core. The three unsaturated B sites are terminated by two boronyl (BO) groups and an O- ligand. The B5O6 - cluster can be faithfully formulated as B3O3(BO)2O-. This structure is in stark contrast to that of its predecessors, C s B5O5 - and T d B5O4 -, both of which have a tetrahedral B center. Thus, there exists a major structural transformation in B5O n - series upon oxidation, indicating intriguing competition between tetrahedral and heterocyclic structures. The chemical bonding analyses show weak 6π aromaticity in the B5O6 - cluster, rendering it a boronyl analog of phenolate anion (C6H5O-) or boronyl boroxine. The calculated vertical detachment energy of B5O6 - cluster is 5.26 eV at PBE0, which greatly surpasses the electron affinities of halogens (Cl: 3.61 eV), suggesting that the cluster belongs to superhalogen anions.

14.
Phys Chem Chem Phys ; 24(11): 7068-7076, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35258052

RESUMO

A class of ternary 14-electron clusters, XB2Be2 (X = Si, Ge, Sn, Pb), have been computationally predicted with a planar tetracoordinate silicon (ptSi) unit, as well as its heavier ptGe/Sn/Pb congeners. These pentaatomic ptSi/Ge/Sn/Pb species are established as global-minimum structures via computer global searches, followed by electronic structure calculations at the PBE0-D3, B3LYP-D3, and single-point CCSD(T) levels. Molecular dynamics simulations indicate that they are also kinetically stable against isomerization or decomposition. Chemical bonding analyses show that the clusters have double 2π/2σ aromaticity. The latter concept underlies the stability of ptSi/Ge/Sn/Pb clusters, overriding the 14-electron count or its variants, such as the 18-electron rule. No sp3 hybridization occurs in these species, which naturally explains why they are ptSi/Ge/Sn/Pb (rather than traditional tetrahedral) systems.

15.
J Phys Chem A ; 125(23): 5022-5030, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34096293

RESUMO

Planar C2v B19- global-minimum (GM) cluster is known as a molecular Wankel motor, featuring unique chemical bonding and structural fluxionality. While the geometry, bonding, and molecular dynamics of the cluster are documented in the literature, it remains warranted to fully understand its bonding nature and unravel the mechanism behind the structural dynamics. We shall offer herein an updated bonding model on the bases of canonical molecular orbital (CMO) analysis and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The computational data indicate that the B19- cluster has inner 2π/6σ and outer 10π/14σ concentric 4-fold π/σ aromaticity. Being spatially isolated from each other, the inner B6 disk supports 2π and 6σ subsystems, whereas the outer B18 double-ring ribbon has 10π and 14σ subsystems. All 4-fold π/σ subsystems are intrinsically delocalized and conform to the (4n + 2) Hückel rule for aromaticity. The change of Wiberg bond index (WBI) from GM to transition-state (TS) for radial B-B links is minimal and uniform, which offers a semiquantitative measure of structural dynamics and underlies the low energy barrier.

16.
Chem Commun (Camb) ; 56(59): 8305-8308, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32573598

RESUMO

A 17-electron CBe5H4+ cluster features planar pentacoordinate carbon, owing to the 2π/6σ double aromaticity. The neutral CBe5H4 cluster has a tetrahedral configuration despite its 18-electron counting. The latter species is governed by σ conjugation.

17.
Chem Asian J ; 15(7): 1094-1104, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32104982

RESUMO

Boron forms a rich variety of low-dimensional nanosystems, including the newly discovered helix Be6 B10 2- (1) and Be6 B11 - (2) clusters. We report herein on the elucidation of chemical bonding in clusters 1/2, using the modern quantum chemistry tools of canonical molecular orbital analyses and adaptive natural density partitioning (AdNDP). It is shown that clusters 1/2 contain a chiral helix Be2 B10 Be2 or Be2 B11 Be2 skeleton with a total of 11 and 12 segments, respectively, which effectively curve into "helical pseudo rings" and chemically consist of two "quasicircles" as defined by their anchoring Be centers. The helix skeleton is connected via Lewis-type B-B and Be-B-Be σ bonds, being further stabilized by island π/σ bonds and a loose π bond at the junction. The Be6 component in 1/2 assumes a distorted prism shape only physically, and it is fragmented into four parts: two terminal Be2 dimers and two isolated Be centers. A Be2 dimer at the far end manages to bend over and cap a quasicircle from one side of B plane. Consequently, each quasicircle of a helical pseudo ring is capped from opposite sides by two Be2 /Be units, facilitating intramolecular charge-transfers of 5 electrons from Be to B. Overall, the folding of B helix involves as many as 10 electrons. The enormous electrostatics offers the ultimate driving forces for B helix formation.


Assuntos
Berílio/química , Boro/química , Nanoestruturas/química , Dimerização , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Eletricidade Estática
18.
J Mol Model ; 26(2): 30, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965328

RESUMO

A series of fluxional planar boron and boron-based binary clusters have evoked considerable interest of chemists. Here we propose the first ternary nanocompass cluster Mg2BeB8 based on quantum chemical calculations. It possesses a half-sandwich structure with a Mg2 dimer as the needle and a BeB8 molecular wheel as baseplate, which is the global minimum on the potential energy surface. Mg2BeB8 can be viewed as a nanocompass, whose Mg2 needle can rotate freely around the BeB8 baseplate at 300 K. The calculated rotation barrier is only 0.1 kcal mol-1 at the single-point CCSD(T)/6-311+G(d)//PBE0/6-311+G(d) level. Chemical bonding analyses indicate that Mg2BeB8 is a charge-transfer complex [Mg2]2+[BeB8]2- in nature. There is localized covalent Mg-Mg bond for [Mg2]2+ needle, while there are three delocalized π and three delocalized σ bonds for [BeB8]2- baseplate. The ionic bonding between the [Mg2]2+ needle and the 6π/6σ double aromatic [BeB8]2- baseplate makes the Mg2BeB8 cluster fluxional. The current results suggest that altering the baseplate is an effective way to enrich the nanocompass' family.

19.
ACS Omega ; 4(25): 21311-21318, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31867525

RESUMO

The strategy to remove the lone pairs of ligands combined with the bonding similarity between Li and Al have been utilized to design new planar tetracoordinate carbon (ptC) species C 2v CLiAl2E and CLi2AlE based on ptC global minima CAl3E (E = P, As, Sb, Bi) clusters. The explorations of potential energy surfaces and high-level CCSD(T) calculations indicate that these planar tetracoordinate carbon (ptC) species with 16 and 14 valence electrons (ve) are the global minima except for CLiAl2P. Bonding analyses reveal that there is one π and three σ bonds between C and ligands, one delocalized σ bond between the peripheral ligands, and three/two lone pairs for CLiAl2E and CLi2AlE (E = P, As, Sb, Bi). Especially, the C=E double bonds are crucial for the stabilities of these ptC clusters. The ptC core is governed by 2π + 6σ bonding, which conforms to the 8-electron counting. Born-Oppenheimer molecular dynamics (BOMD) simulations reveal that CLiAl2E and CLi2AlE (E = P, As, Sb, Bi) clusters are robust against isomerization and decomposition. The results obtained in this work complete the series of ptC CLi n Al3-n E (E = P, As, Sb, Bi; n = 0-3) systems and 18ve, 16ve, 14ve, and 12ve counting.

20.
Phys Chem Chem Phys ; 21(39): 22048-22056, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31565718

RESUMO

Molecules with planar tetracoordinate carbons (ptCs) are exotic in chemical bonding, and they are normally designed according to the 18-electron rule. Here we report on the viability of ptC clusters with as few as 12 valence electrons, which represent the lower limit in terms of electron counting. Specifically, we have computationally designed a class of ternary 12-electron ptC clusters, CBe3X3+ (X = H, Li, Na, Cu, Ag), based on a rhombic CBe32- unit. Computer structural searches reveal that the ptC species are global minima, whose C center is coordinated in-plane by three Be atoms and a terminal X atom via robust C-Be/C-X bonding, either covalent or ionic. The other two X atoms are on the periphery and each bridge two Be atoms. Bonding analyses show that the ptC core is governed by delocalized 2π/6σ bonding, that is, double π/σ aromaticity, which collectively conforms to the 8-electron counting. Additional 4 electrons contribute to peripheral Be-X-Be and Be-Be σ bonding. The delocalized 2π/6σ frameworks appear to be universal for all ptC clusters, ranging from 18-electron down to 12-electron systems. In other words, the ptC species are dictated entirely by the 8-electron counting. Predicted vertical electron affinities of these ptC clusters range from 3.13 to 5.48 eV, indicative of superalkali or pseudoalkali cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA