RESUMO
Obesity is a critical risk factor for the development of metabolic diseases and is often associated with dysfunctional adipocytes. Prevalent treatments such as lifestyle intervention, pharmacotherapy, and bariatric surgery are often accompanied by adverse side effects and poor patient compliance. Nanotechnology and cell-based therapy offer innovative approaches for targeted obesity treatments, as they can directly target adipocytes, regulate lipid metabolism, and minimize off-target effects. Here, we provide an overview of the intricate relationship between adipocytes and obesity, highlighting the potential of nanotechnology and cell-based therapy in obesity treatment. Additionally, we discuss the advancements of adipose-derived mesenchymal stem cells (ADMSCs) in obesity progression, including the latest challenges and considerations for developing adipose-targeted treatments for obesity. The objective is to provide a perspective on the design and development of nanotechnology and cell-based therapy for treating obesity and related comorbidities.
RESUMO
Over the past decade, the most fundamental challenges faced by the development of lithium-sulfur batteries (LSBs) and their effective solutions have been extensively studied. To further transfer LSBs from the research phase into the industrial phase, strategies to improve the performance of LSBs under practical conditions are comprehensively investigated. These strategies can simultaneously optimize the sulfur cathode and Li-metal anode to account for their interactions under practical conditions, without involving complex preparation or costly processes. Therefore, "two-in-one" strategies, which meet the above requirements because they can simultaneously improve the performance of both electrodes, are widely investigated. However, their development faces several challenges, such as confused design ideas for bi-functional sites and simplex evaluation methods (i. e. evaluating strategies based on their bi-functionality only). To date, as few reviews have focused on these challenges, the modification direction of these strategies is indistinct, hindering further developments in the field. In this review, the advances achieved in "two-in-one" strategies and categorizing them based on their design ideas are summarized. These strategies are then comprehensively evaluated in terms of bi-functionality, large-scale preparation, impact on energy density, and economy. Finally, the challenges still faced by these strategies and some research prospects are discussed.
RESUMO
Achieving food sustainability is one of the biggest challenges in the new millennium. Plant factory cultivation systems provide an alternative for food sustainability, while they often suffer from algal blooms. The overuse of conventional algaecides has caused significant environmental pollution and concerns about food security. Here, we design a nanoenabled metal-organic algaecide that is self-assembled from natural polyphenols and two functional metal ions for providing shading effects and delivering active ingredients synergistically to suppress algal blooms. Black wattle tannin (BWT) and Fe3+ ions are utilized to develop self-assembled FeBWT nanoalgaecides with significant shading effects for decreasing light transmission (up to 97%) and effectively inhibiting algal photosynthesis. Further, the FeBWT is functionalized with Cu2+ ions (bimetallic Cu/FeBWT) to target the algal cells and release Cu2+ ions via phenolic-mediated cell surface interactions, thus enhancing the inhibition efficiency. Importantly, the biosafety of Cu/FeBWT is demonstrated through toxicity tests on zebrafish and NIH3T3 cells. In our real-world field test, the Cu/FeBWT demonstrates high algal inhibition performance (> 95%, over 30 days), and enhances the accumulation of food nutrients in model plant lettuces. Collectively, the supramolecular metal-organic nanoalgaecide provides a promise for nanoagrochemical application and promoting food sustainability and security.
RESUMO
Hydrogen bond-mediated supramolecular crystalline materials, such as hydrogen-bonded organic frameworks, offer a promising strategy for protein biomineralization, yet the intricate design and multi-step synthesis of specific orthogonal units in molecular building blocks pose a significant synthetic challenge. Identifying new classes of natural building blocks capable of facilitating supramolecular framework construction while enabling stable protein binding has remained an elusive goal. Here, we introduce a versatile assembly strategy enabling the organization of diverse proteins and phenolic building blocks into highly crystalline hydrogen-bonded supramolecular phenolic frameworks (ProteinX@SPF). The natural ellagic acid (EA) exhibits a centrosymmetric structure with catechol groups on each molecular side, facilitating hydrogen bonding with protein amino acid residues for primary nucleation. Subsequently, EA self-assembles into ProteinX@SPF through hydrogen bonding and π-π interactions. The multiple hydrogen-bonding interactions impart structural rigidity and directional integrity, conferring ProteinX@SPF biohybrids with remarkable resistance to harsh conditions while preserving protein bioactivity. Additionally, the supramolecular stacking induced by π-π interactions endows ProteinX@SPF with long-range ordered nanochannels, which can serve as the gating to sieve the catalytic substrate and thus enhance the biocatalytic specificity. This work sheds light on biomineralization with natural building blocks for functional biohybrids, showing enormous potential in biocatalysis, sensing, and nanomedicine.
Assuntos
Biomineralização , Ligação de Hidrogênio , Fenóis/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/síntese química , Proteínas/química , Proteínas/metabolismo , Tamanho da Partícula , Estrutura MolecularRESUMO
Orthopedic and dental implantations under bacterial infection microenvironment face significant challenges in achieving high-quality bone-implant integration. Designing implant coatings that incorporate both immune defense and anti-inflammation is difficult in conventional single-functional coatings. We introduce a multifunctional nanointerface using a zinc finger-inspired peptide-metal-phenolic nanocoating, designed to enhance implant osseointegration under such conditions. Abaloparatide (ABL), a second-generation anabolic drug for treating osteoporosis, can be integrated into the design of a zinc-phenolic network constructed on the implant surface (ABL@ZnTA). Importantly, the phenolic-coordinated Zn2+ ions in ABL@ZnTA can act as zinc finger motif to co-stabilize the configuration of ABL through multiple molecular interactions, enabling high bioactivity, high loading capacity (1.36 times), and long-term release (>7 days) of ABL. Our results showed that ABL@ZnTA can modulate macrophage polarization from the pro-inflammatory M1 towards the anti-inflammatory M2 phenotype, promoting immune osteogenesis with increased OCN, ALP, and SOD 1 expression. Furthermore, the ABL@ZnTA significantly reduces inflammatory fibrous tissue encapsulation and enhances the long-term stability of the implants, indicated by enhanced binding strength (6 times) and functional connectivity (1.5-3 times) in the rat bone defect model infected by S. aureus. Overall, our research offers a nano-enabled synergistic strategy that balances infection defense and osteogenesis promotion in orthopedic and dental implantations.
RESUMO
Pullulanases are important starch-debranching enzymes that mainly hydrolyze the α-1,6-glycosidic linkages in pullulan, starch, and oligosaccharides. Nevertheless, their practical applications are constrained because of their poor activity and low thermostability. Moreover, the trade-off between activity and thermostability makes it challenging to simultaneously improve them. In this study, an engineered pullulanase was developed through reshaping the active-site tunnel and engineering the surface lysine residues using the pullulanase from Pyrococcus yayanosii CH1 (PulPY2). The specific activity of the engineered pullulanase was increased 3.1-fold, and thermostability was enhanced 1.8-fold. Moreover, the engineered pullulanase exhibited 11.4-fold improvement in catalytic efficiency (kcat/Km). Molecular dynamics simulations demonstrated an anti-correlated movement around the entrance of active-site tunnel and stronger interactions between the surface residues in the engineered pullulanase, which would be beneficial to the activity and thermostability improvement, respectively. The strategies used in this study and dynamic evidence for insight into enzyme performance improvement may provide guidance for the activity and thermostability engineering of other enzymes.
Assuntos
Domínio Catalítico , Estabilidade Enzimática , Glicosídeo Hidrolases , Lisina , Simulação de Dinâmica Molecular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Lisina/química , Lisina/metabolismo , Pyrococcus/enzimologia , Engenharia de Proteínas/métodos , Cinética , TemperaturaRESUMO
Potassium-ion batteries (PIBs) have been widely studied owing to the abundant reserves, widespread distribution, and easy extraction of potassium (K) resources. Molybdenum disulfide (MoS2) has received a great deal of attention as a key anode material for PIBs owing to its two-dimensional diffusion channels for K+ ions. However, due to its poor electronic conductivity and the huge influence of embedded K+ ions (with a large ionic radius of 3.6 Å) on MoS2 layer, MoS2 anodes exhibit a poor rate performance and easily collapsed structure. To address these issues, the common strategies are enlarging the interlayer spacing to reduce the mechanical strain and increasing the electronic conductivity by adding conductive agents. However, simultaneous implementation of the above strategies by simple methods is currently still a challenge. Herein, MoS2 anodes on reduced graphene oxide (MoS2/rGO) composite were prepared using one-step hydrothermal methods. Owing to the presence of rGO in the synthesis process, MoS2 possesses a unique scaled structure with large layer spacing, and the intrinsic conductivity of MoS2 is proved. As a result, MoS2/rGO composite anodes exhibit a larger rate performance and better cycle stability than that of anodes based on pure MoS2, and the direct mixtures of MoS2 and graphene oxide (MoS2-GO). This work suggests that the composite material of MoS2/rGO has infinite possibilities as a high-quality anode material for PIBs.
RESUMO
Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-ß1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-ß1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-ß1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.
Assuntos
Fibrose , Metiltransferases , Monócitos , NF-kappa B , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Monócitos/metabolismo , Masculino , Animais , NF-kappa B/metabolismo , Eritrócitos/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Feminino , Metilação , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Micropartículas Derivadas de Células/metabolismo , Leucócitos Mononucleares/metabolismo , Angiotensina II/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Remodelação Ventricular , Miocárdio/metabolismo , Miocárdio/patologia , Nanomedicina/métodosRESUMO
Albumin nanoparticles are widely used in biomedicine due to their safety, low immunogenicity, and prolonged circulation. However, incorporating therapeutic molecules into these carriers faces challenges due to limited binding sites, restricting drug conjugation efficiency. We introduce a universal nanocarrier platform (X-UNP) using polyphenol-based engineering to incorporate phenolic moieties into albumin nanoparticles. Integration of catechol or galloyl groups significantly enhances drug binding and broadens the drug conjugation possibilities. Our study presents a library of X-UNP nanoparticles with improved drug-loading efficiency, achieving up to 96% across 10 clinically used drugs, surpassing conventional methods. Notably, ibuprofen-UNP nanoparticles exhibit a 5-fold increase in half-life compared with free ibuprofen, enhancing in vivo analgesic and anti-inflammatory effectiveness. This research establishes a versatile platform for protein-based nanosized materials accommodating various therapeutic agents in biotechnological applications.
Assuntos
Nanopartículas , Polifenóis , Polifenóis/química , Nanopartículas/química , Animais , Camundongos , Ibuprofeno/química , Portadores de Fármacos/química , Humanos , Albuminas/química , Soroalbumina Bovina/químicaRESUMO
Due to the presence of natural neoantigens, autologous tumor cells hold great promise as personalized therapeutic vaccines. Yet autologous tumor cell vaccines require multi-step production that frequently leads to the loss of immunoreactive antigens, causing insufficient immune activation and significantly hampering their clinical applications. Herein, we introduce a novel whole-cell cancer vaccine by cloaking cancer cells with lipopolysaccharide-decorated manganese(II)-phenolic networks (MnTA nanocloaks) to evoke tumor-specific immune response for highly efficacious synergistic cancer immunotherapy. The natural polyphenols coordinate with Mn2+ and immediately adhere to the surface of individual cancer cells, thereby forming a nanocloak and encapsulating tumor neoantigens. Subsequent decoration with lipopolysaccharide induces internalization by dendritic cells, where Mn2+ ions are released in the cytosol, further facilitating the activation of the stimulator of the interferon genes (STING) pathway. Highly effective tumor suppression was observed by combining the nanocloaked cancer cell treatment with anti-programmed cell death ligand 1 (anti-PD-L1) antibodies-mediated immune checkpoint blockade therapy. Our work demonstrates a universal yet simple strategy to engineer a cell-based nanobiohybrid system for enhanced cancer immunotherapy.
Assuntos
Neoplasias , Vacinas , Humanos , Imunoterapia , Lipopolissacarídeos , Neoplasias/terapia , Microambiente Tumoral , Vacinas AnticâncerRESUMO
Ubiquitous antibiotics threaten human health and ecosystem sustainability, and existing removal strategies, especially conventional multistep water treatments, are primarily limited by the antibiotic-specific removal capability. Here, we explore the natural biomass, plant polyphenols, in the capture of various antibiotics with a facile treatmentâpolyphenol-mediated antibiotic-independent supramolecular coagulation (PMAC). The PMAC shows a superior performance in removing five tetracyclines and quinolones (up to 98.54%), even under complex environmental parameters, including different pH, the presence of inorganic particles and ionic strength, and the presence of conventional colloid-associated contaminants. Our mechanistic studies suggested that PMAC is capable of exerting multiple molecular interactions with various antibiotics, and the coordination-driven self-assembly further destabilizes the phenolic-antibiotic nanocomplexes, enabling an antibiotic-independent coagulation. Collectively, the combination of efficient remediation with inexpensive biomass suggests a simple and scalable method for the sustainable removal of antibiotics. Our strategy shows great promise as a cost-effective, facile approach to eliminate antibiotics capable of being integrated into the currently existing water treatment systems.
RESUMO
Pullulanase is a starch-debranching enzyme that hydrolyzes side chain of starch, oligosaccharides and pullulan. Nevertheless, the limited activities of pullulanases constrain their practical application. Herein, the hyperthermophilic type II pullulanase from Pyrococcus yayanosii CH1 (PulPY2) was evolved by synergistically engineering the substrate-binding pocket and active-site lids. The resulting mutant PulPY2-M2 exhibited 5-fold improvement in catalytic efficiency (kcat/Km) compared to that of PulPY2. PulPY2-M2 was utilized to develop a one-pot reaction system for efficient production of maltooligosaccharides. The maltooligosaccharides conversion rate of PulPY2-M2 reached 96.1%, which was increased by 5.4% compared to that of PulPY2. Furthermore, when employed for glucose production, the glucose productivity of PulPY2-M2 was 25.4% and 43.5% higher than that of PulPY2 and the traditional method, respectively. These significant improvements in maltooligosaccharides and glucose production and the efficient utilization of corn starch demonstrated the potential of the engineered PulPY2-M2 in starch sugar industry.
Assuntos
Glucose , Amido , Amido/química , Zea mays/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/química , Archaea , Especificidade por SubstratoRESUMO
OBJECTIVE: This systematic review aimed at synthesizing current evidence on biomarkers associated with cognitive impairment (CI) in Post-Traumatic Stress Disorder (PTSD). METHODS: A systematic literature search was conducted for studies assessing biomarkers associated with CI in PTSD. RESULTS: Of the 10,149 titles screened, 8 studies met our inclusion criteria. In a single longitudinal study, MRI volumes, Aß and tau accumulation were not associated with CI in PTSD. Studies on structural imaging reported no significant association between morphological changes and CI. Two studies on diffusion neuroimaging showed abnormalities in white matter tracts which were cross-sectionally associated with CI in PTSD. Similarly, lower resting-state functional connectivity in neocortical networks, and elevated tau in the neocortex were also cross sectionally associated with CI. Two single studies on biochemical biomarkers showed that sixteen novel plasma proteins and lower BDNF, indicative of genetic vulnerabilities associated with neural and synaptic dysfunctions commonly observed in neurodegeneration, were cross-sectionally associated with CI in PTSD. Overall, evidence is of low quality. CONCLUSIONS: Longitudinal research utilizing large representative samples of trauma exposed populations are needed to establish the utility of specific biomarkers in monitoring cognitive decline in PTSD.
Assuntos
Disfunção Cognitiva , Transtornos de Estresse Pós-Traumáticos , Humanos , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Estudos Longitudinais , Neuroimagem , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/psicologiaRESUMO
Nature has exhibited a high degree of control over the structures and functions. Supramolecules have been utilized to mimic the subtle assembly in nature. However, sophisticated synthesis of molecular skeletons or programmable design of the driving forces raises great challenges in fabricating high-level superstructures in a controlled manner. Natural polyphenols show great promises as building blocks for a diverse of assemblies with controlled structures and functionalities. The intrinsically embedded phenolic groups (i. e., catechol and galloyl groups) are readily forming multiple molecular interactions, including coordination, hydrogen bonding, and π-π interactions with various materials of inorganic particles, organic compounds, synthetic polymers, and biomacromolecules, providing the self-assembled structures or nanocoating on surfaces. Subsequent assembly occurred by further bonding of polyphenols to construct supraparticles. To gain control over the self-assembly, the key lies in the interplay among the molecular interactions with one or two being dominant. In this Perspective, we introduce the representative polyphenol-based assemblies and their derived supraparticles to exhibit the effective harness of the controlled self-assembly by polyphenols.
RESUMO
Cinnamamide and its derivatives are the most common and important building blocks widely present in natural products. Currently, nitrile hydratase (NHase, EC 4.2.1.84) has been widely used in large-scale industrial production of nicotinamide and acrylamide, while its catalytic activity is extremely low or inactive for bulky nitrile substrates such as cinnamonitrile. Therefore, beneficial variant ßF37P/L48P/F51N were obtained from PtNHase of Pseudonocardia thermophila JCM3095 by reshaping of substrate access tunnel and binding pocket, which exhibited 14.88-fold improved catalytic efficiency compared to the wild-type PtNHase. Structure analysis, molecular dynamics simulations and dynamical cross-correlation matrix (DCCM) analysis revealed that the introduced mutations enlarged the substrate access tunnel and binding pocket, enhanced overall anti-correlated movements of enzymes, which would promote product release during the dynamic process of catalysis. In a hydration process, the complete conversion of 5 mM cinnamonitrile was achieved by ßF37P/L48P/F51N in a 50 mL reaction, with cinnamamide yield of almost 100 % and productivity of 0.736 g L-1 h-1. The study demonstrates the co-evolution of substrate access tunnel and binding pocket is an effective strategy, and provides a valuable reference for future research. Furthermore, NHases have huge potential for catalyzing bulky nitriles to form corresponding amides in large-scale industrial production.
Assuntos
Hidroliases , Nitrilas , Nitrilas/química , Hidroliases/metabolismoRESUMO
Polydopamine is a remarkable molecule that has gained considerable attention for its role in material surface modification, leading to an abundance of research in the biomaterial domain. While its widespread use is well documented, the molecule's potential cellular interactions have been less explored. In particular, dopamine serves as a neurotransmitter and a hormone that interacts with dopamine receptors in cells. Our study sheds light on the previously unexamined interaction between polydopamine and dopamine receptor D1 (DRD1). We discovered that polydopamine, along with its derivatives, such as levodopa and catechol, can activate DRD1âa function previously attributed solely to dopamine. Moreover, we found that polydopamine has the ability to influence cell behavior through the cAMP/PKA pathway, thereby affecting RhoA activity and stress fiber formation. These observations invite further consideration regarding the biological safety of polydopamine in biomedical contexts and also open avenues for new research directions in designing bioactive functional materials.
Assuntos
Dopamina , Levodopa , Dopamina/metabolismo , Polímeros/farmacologia , Indóis/farmacologiaRESUMO
The growing global population necessitates substantial increases in food production. Hydroponic cultivation systems afford a critical alternative for food sustainability and enable stable annual production regardless of the climatic and geographical variations. However, the overgrowth of harmful algal blooms significantly threatens the crop yield by competing with nutrition in the solution and producing contaminants. The conventional practice of algaecides fails to control algal proliferation due to the limited efficiency and food safety concerns. Nanopesticides can deliver active ingredients responsively to suppress crop diseases and offer solutions to current practical challenges and difficulties. Inspired by prospects of nanotechnology for agricultural applications, we have utilized natural polyphenols and copper ions (Cu2+ ions) to develop self-assembled nanoalgaecides referred to as CuBes. The nanoalgaecide attached to algal cells via phenolic surface interactions, enabling localized Cu2+ ion release. This cell-targeted delivery suppressed Chlorella vulgaris for over 30 days (99% inhibition). Transcriptomics revealed that the nanoalgaecide disrupted algal metabolism by downregulating photosynthesis and chlorophyll pathways. In a solar-illuminated plant factory, the nanoalgaecide showed higher algal inhibition and lettuce biosafety versus the commercial Kocide 3000. Notably, the use of nanoalgaecide can enhance the nutrient value of lettuces, which meets the daily supply of Cu for adults. By integrating smart nanotechnology design with selective delivery mechanisms, this metal-phenolic nanoalgaecide provides a nanoenabled solution for controlling harmful algal blooms in hydroponics to advance food production.
Assuntos
Chlorella vulgaris , Cobre , Adulto , Humanos , Hidroponia , Agricultura , Fenóis , Lactuca , ÍonsRESUMO
SO2 removal is critical to flue gas purification. However, based on performance and cost, materials under development are hardly adequate substitutes for active carbon-based materials. Here, we engineered biomass-derived nanostructured carbon nanofibers integrated with highly dispersed bimetallic Ti/CoOx nanoparticles through the thermal transition of metal-phenolic functionalized industrial leather wastes for synergistic SO2 adsorption and in situ catalytic conversion. The generation of surface-SO32- and peroxide species (O22-) by Ti/CoOx achieved catalytic conversion of adsorbed SO2 into value-added liquid H2SO4, which can be discharged from porous nanofibers. This approach can also avoid the accumulation of the adsorbed SO2, thereby achieving high desulfurization activity and a long operating life over 6000 min, preceding current state-of-the-art active carbon-based desulfurization materials. Combined with the techno-economic and carbon footprint analysis from 36 areas in China, we demonstrated an economically viable and scalable solution for real-world SO2 removal on the industrial scale.
Assuntos
Carvão Vegetal , Dióxido de Enxofre , Adsorção , Biomassa , CarbonoRESUMO
Drug-dependent design of hydrogels is currently required for engineering the controlled release of therapeutics, which is a major contributor to the technical challenges relating to the clinical translation of hydrogel-drug systems. Herein, by integrating supramolecular phenolic-based nanofillers (SPFs) into hydrogel microstructures we developed a facile strategy to endow a range of clinically relevant hydrogels with controlled release properties for diverse therapeutic agents. The assembly of multiscale SPF aggregates leads to tunable mesh size and multiple dynamic interactions between SPF aggregates and drugs, which relaxes the available choices of drugs and hydrogels. This simple approach allowed for the controlled release of 12 representative drugs evaluated with 8 commonly used hydrogels. Moreover, the anesthetic drug lidocaine was loaded into SPF-integrated alginate hydrogel and demonstrated sustained release for 14 days in vivo, validating the potential for long-term anesthesia in patients.
Assuntos
Hidrogéis , Lidocaína , Humanos , Hidrogéis/química , Preparações de Ação Retardada , Sistemas de Liberação de MedicamentosRESUMO
Nano-/microplastics accumulate in aquatic bodies and raise increasing threats to ecosystems and human health. The limitation of existing water cleanup strategies, especially in the context of nano-/microplastics, primarily arises from their complexity (morphological, compositional, and dimensional). Here, highly efficient and bio-based flowthrough capturing materials (bioCap) are reported to remove a broad spectrum of nano-/microplastics from water: polyethylene terephthalate (anionic, irregular shape), polyethylene (net neutral, irregular shape), polystyrene (anionic and cationic, spherical shape), and other anionic and spherical shaped particles (polymethyl methacrylate, polypropylene, and polyvinyl chloride). Highly efficient bioCap systems that adsorb the ubiquitous particles released from beverage bags are demonstrated. As evidence of removal from drinking water, the in vivo biodistribution of nano-/microplastics is profiled, confirming a significant reduction of particle accumulation in main organs. The unique advantage of phenolic-mediated multi-molecular interactions is employed in sustainable, cost-effective, and facile strategies based on wood sawdust support for the removal of challenging nano-/microplastics pollutions.