Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(3): 101465, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38460518

RESUMO

The manipulation of T cell metabolism to enhance anti-tumor activity is an area of active investigation. Here, we report that activating the amino acid starvation response in effector CD8+ T cells ex vivo using the general control non-depressible 2 (GCN2) agonist halofuginone (halo) enhances oxidative metabolism and effector function. Mechanistically, we identified autophagy coupled with the CD98-mTOR axis as key downstream mediators of the phenotype induced by halo treatment. The adoptive transfer of halo-treated CD8+ T cells into tumor-bearing mice led to robust tumor control and curative responses. Halo-treated T cells synergized in vivo with a 4-1BB agonistic antibody to control tumor growth in a mouse model resistant to immunotherapy. Importantly, treatment of human CD8+ T cells with halo resulted in similar metabolic and functional reprogramming. These findings demonstrate that activating the amino acid starvation response with the GCN2 agonist halo can enhance T cell metabolism and anti-tumor activity.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Neoplasias/patologia , Imunoterapia , Aminoácidos
2.
JCI Insight ; 9(6)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38516892

RESUMO

Tregs have the potential to establish long-term immune tolerance in patients recently diagnosed with type 1 diabetes (T1D) by preserving ß cell function. Adoptive transfer of autologous thymic Tregs, although safe, exhibited limited efficacy in previous T1D clinical trials, likely reflecting a lack of tissue specificity, limited IL-2 signaling support, and in vivo plasticity of Tregs. Here, we report a cell engineering strategy using bulk CD4+ T cells to generate a Treg cell therapy (GNTI-122) that stably expresses FOXP3, targets the pancreas and draining lymph nodes, and incorporates a chemically inducible signaling complex (CISC). GNTI-122 cells maintained an expression profile consistent with Treg phenotype and function. Activation of CISC using rapamycin mediated concentration-dependent STAT5 phosphorylation and, in concert with T cell receptor engagement, promoted cell proliferation. In response to the cognate antigen, GNTI-122 exhibited direct and bystander suppression of polyclonal, islet-specific effector T cells from patients with T1D. In an adoptive transfer mouse model of T1D, a mouse engineered-Treg analog of GNTI-122 trafficked to the pancreas, decreased the severity of insulitis, and prevented progression to diabetes. Taken together, these findings demonstrate in vitro and in vivo activity and support further development of GNTI-122 as a potential treatment for T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Linfócitos T Reguladores , Autoantígenos , Tolerância Imunológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA