Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 70(6): 600-606, 2018 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-30560268

RESUMO

Basolateral inwardly-rectifying K+ channels (Kir) play an important role in the control of resting membrane potential and transepithelial voltage, thereby modulating water and electrolyte transport in the distal part of nephron. Kir4.1 and Kir4.1/Kir5.1 heterotetramer are abundantly expressed in the basolateral membrane of late thick ascending limb (TAL), distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD). Loss-of-function mutations in KCNJ10 cause EAST/SeSAME syndrome in humans associated with epilepsy, ataxia, sensorineural deafness and water-electrolyte metabolism imbalance, which is characterized by salt wasting, hypomagnesaemia, hypokalaemia and metabolic alkalosis. In contrast, mice lacking Kir5.1 have severe renal phenotype apart from hypokalaemia such as high chlorine metabolic acidosis and hypercalcinuria. The genetic knockout or functional inhibition of Kir4.1 suppresses Na-Cl cotransporter (NCC) expression and activity in the DCT. However, the downregulation of Kir4.1 increases epithelial Na+ channel (ENaC) expression in the collecting duct. Recently, factors regulating expression and activity of Kir4.1 and Kir4.1/Kir5.1 were identified, such as cell acidification, dopamine, insulin and insulin-like growth factor-1. The involved mechanisms include PKC, PI3K, Src family protein tyrosine kinases and WNK-SPAK signal transduction pathways. Here we review the progress of renal tubule basolateral Kir, and mainly discuss the function and regulation of Kir4.1 and Kir4.1/Kir5.1.


Assuntos
Túbulos Renais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Membrana Celular , Humanos , Túbulos Renais Distais , Potenciais da Membrana , Camundongos , Canal Kir5.1
2.
Hypertension ; 72(2): 361-369, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29915013

RESUMO

Stimulation of BK2R (bradykinin [BK] B2 receptor) has been shown to increase renal Na+ excretion. The aim of the present study is to explore the role of BK2R in regulating Kir4.1 and NCC (NaCl cotransporter) in the distal convoluted tubule (DCT). Immunohistochemical studies demonstrated that BK2R was highly expressed in both apical and lateral membrane of Kir4.1-positive tubules, such as DCT. Patch-clamp experiments demonstrated that BK inhibited the basolateral 40-pS K+ channel (a Kir4.1/5.1 heterotetramer) in the DCT, and this effect was blocked by BK2R antagonist but not by BK1R (BK B1 receptor) antagonist. Whole-cell recordings also demonstrated that BK decreased the basolateral K+ conductance of the DCT and depolarized the membrane. Renal clearance experiments showed that BK increased urinary Na+ and K+ excretion. However, the BK-induced natriuretic effect was completely abolished in KS-Kir4.1 KO (kidney-specific conditional Kir4.1 knockout) mice, suggesting that Kir4.1 activity is required for BK-induced natriuresis. The continuous infusion of BK with osmotic pump for 3 days decreased the basolateral K+ conductance and the negativity of the DCT membrane. Western blot showed that infusion of BK decreased the expression of total NCC and phosphorylated NCC. Renal clearance experiments demonstrated that thiazide-induced natriuresis was blunted in the mice receiving BK infusion, suggesting that BK inhibited NCC function. Consequently, mice receiving BK infusion for 3 days were hypokalemic. We conclude that stimulation of BK2R inhibits NCC activity, increases urinary K+ excretion, and causes mice hypokalemia and that Kir4.1 is required for BK2R-mediated stimulation of urinary Na+ and K+ excretion.


Assuntos
Bradicinina/farmacologia , Túbulos Renais Distais/metabolismo , Natriurese/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sódio/urina , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Feminino , Imuno-Histoquímica , Transporte de Íons , Túbulos Renais Distais/efeitos dos fármacos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA