Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci China Life Sci ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38805064

RESUMO

Centromeres play a vital role in cellular division by facilitating kinetochore assembly and spindle attachments. Despite their conserved functionality, centromeric DNA sequences exhibit rapid evolution, presenting diverse sizes and compositions across species. The functional significance of rye centromeric DNA sequences, particularly in centromere identity, remains unclear. In this study, we comprehensively characterized the sequence composition and organization of rye centromeres. Our findings revealed that these centromeres are primarily composed of long terminal repeat retrotransposons (LTR-RTs) and interspersed minisatellites. We systematically classified LTR-RTs into five categories, highlighting the prevalence of younger CRS1, CRS2, and CRS3 of CRSs (centromeric retrotransposons of Secale cereale) were primarily located in the core centromeres and exhibited a higher association with CENH3 nucleosomes. The minisatellites, mainly derived from retrotransposons, along with CRSs, played a pivotal role in establishing functional centromeres in rye. Additionally, we observed the formation of R-loops at specific regions of CRS1, CRS2, and CRS3, with both rye pericentromeres and centromeres exhibiting enrichment in R-loops. Notably, these R-loops selectively formed at binding regions of the CENH3 nucleosome in rye centromeres, suggesting a potential role in mediating the precise loading of CENH3 to centromeres and contributing to centromere specification. Our work provides insights into the DNA sequence composition, distribution, and potential function of R-loops in rye centromeres. This knowledge contributes valuable information to understanding the genetics and epigenetics of rye centromeres, offering implications for the development of synthetic centromeres in future plant modifications and beyond.

2.
Sci China Life Sci ; 67(7): 1479-1488, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38639838

RESUMO

Non-B-form DNA differs from the classic B-DNA double helix structure and plays a crucial regulatory role in replication and transcription. However, the role of non-B-form DNA in centromeres, especially in polyploid wheat, remains elusive. Here, we systematically analyzed seven non-B-form DNA motif profiles (A-phased DNA repeat, direct repeat, G-quadruplex, inverted repeat, mirror repeat, short tandem repeat, and Z-DNA) in hexaploid wheat. We found that three of these non-B-form DNA motifs were enriched at centromeric regions, especially at the CENH3-binding sites, suggesting that non-B-form DNA may create a favorable loading environment for the CENH3 nucleosome. To investigate the dynamics of centromeric non-B form DNA during the alloploidization process, we analyzed DNA secondary structure using CENH3 ChIP-seq data from newly formed allotetraploid wheat and its two diploid ancestors. We found that newly formed allotetraploid wheat formed more non-B-form DNA in centromeric regions compared with their parents, suggesting that non-B-form DNA is related to the localization of the centromeric regions in newly formed wheat. Furthermore, non-B-form DNA enriched in the centromeric regions was found to preferentially form on young LTR retrotransposons, explaining CENH3's tendency to bind to younger LTR. Collectively, our study describes the landscape of non-B-form DNA in the wheat genome, and sheds light on its potential role in the evolution of polyploid centromeres.


Assuntos
Centrômero , DNA de Plantas , Poliploidia , Triticum , Triticum/genética , Triticum/metabolismo , Centrômero/metabolismo , Centrômero/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Cromossomos de Plantas/genética , Conformação de Ácido Nucleico
3.
New Phytol ; 241(2): 607-622, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897058

RESUMO

The fine centromere structure in Robertsonian wheat-rye translocation chromosomes exhibits variation among different translocation genotypes. Within extensively employed wheat-rye 1RS.1BL translocation lines in wheat breeding, their translocated chromosomes frequently display fused centromere. Nevertheless, the mechanism governing the functionality of the fused centromere in 1RS.1BL translocated chromosomes remains to be clarified. In this study, we investigated the fine centromere structure of the 1RS.1BL translocated chromosome through a combination of cytological and genomics methods. We found that only the rye-derived centromere exhibits functional activity, whether in breeding applications or artificially synthesized translocation chromosomes. The active rye-derived centromere had higher proportion of young full-length long terminal repeat retrotransposons (flLTR-RTs) and more stable non-B DNA structures, which may be beneficial toward transcription of centromeric repeats and CENH3 loading to maintain the activity of rye centromeres. High levels of DNA methylation and H3K9me2 were found in the inactive wheat-derived centromeres, suggesting that it may play a crucial role in maintaining the inactive status of the wheat centromere. Our works elucidate the fine structure of 1RS.1BL translocations and the potential mechanism of centromere inactivation in the fused centromere, contributing knowledge to the application of fused centromere in wheat breeding formation of new wheat-rye translocation lines.


Assuntos
Retroelementos , Secale , Retroelementos/genética , Secale/genética , Melhoramento Vegetal , Cromossomos de Plantas/genética , Triticum/genética , Centrômero/genética , Translocação Genética
4.
Plant J ; 115(5): 1298-1315, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37246611

RESUMO

Nucleolar dominance (ND) is a widespread epigenetic phenomenon in hybridizations where nucleolus transcription fails at the nucleolus organizer region (NOR). However, the dynamics of NORs during the formation of Triticum zhukovskyi (GGAu Au Am Am ), another evolutionary branch of allohexaploid wheat, remains poorly understood. Here, we elucidated genetic and epigenetic changes occurring at the NOR loci within the Am , G, and D subgenomes during allopolyploidization by synthesizing hexaploid wheat GGAu Au Am Am and GGAu Au DD. In T. zhukovskyi, Au genome NORs from T. timopheevii (GGAu Au ) were lost, while the second incoming NORs from T. monococcum (Am Am ) were retained. Analysis of the synthesized T. zhukovskyi revealed that rRNA genes from the Am genome were silenced in F1 hybrids (GAu Am ) and remained inactive after genome doubling and subsequent self-pollinations. We observed increased DNA methylation accompanying the inactivation of NORs in the Am genome and found that silencing of NORs in the S1 generation could be reversed by a cytidine methylase inhibitor. Our findings provide insights into the ND process during the evolutionary period of T. zhukovskyi and highlight that inactive rDNA units may serve as a 'first reserve' in the form of R-loops, contributing to the successful evolution of T. zhukovskyi.


Assuntos
Nucléolo Celular , Triticum , Triticum/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Região Organizadora do Nucléolo , DNA Ribossômico/metabolismo , Metilação de DNA/genética
5.
Front Plant Sci ; 14: 1135321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909435

RESUMO

Wheat stripe rust is a destructive disease in many cool and temperate regions around the world. Exploiting novel sources of resistance can provide wheat cultivars with robust and durable resistance to stripe rust. The wheat-Thinopyrum intermedium addition line TAI-14 was proven to carry a stripe rust resistance gene (named as YrT14) on the alien Th. intermedium chromosome. In order to transfer the resistance gene to wheat, wheat-Th. intermedium translocation lines were created by irradiating the pollen of the line TAI-14. We totally obtained 153 wheat-Th. intermedium translocation lines, among which the long alien segmental translocation line Zhongke 78 and the intercalary translocation line Zhongke 15 not only showed good integrated agronomic traits but also were identified as highly resistant to stripe rust in both seedling and adult plant stages. The alien chromatin in Zhongke 15 was identified as an insertion into the satellite of chromosome 6B, a type of translocation never reported before in chromosome engineering. By screening Simple Sequence Repeat (SSR) and Expressed Sequence Tag (EST) markers as well as the markers developed from RNA-sequencing (RNA-Seq) data, 14 markers were identified specific for the alien chromosome and a physical map was constructed. Both Zhongke 78 and Zhongke 15 could be used as a novel source of stripe rust resistance for wheat breeding, and the linked marker T14K50 can be used for molecular marker-assisted breeding. Finally, based on the karyotype, reaction to stripe rust, and genome resequencing data of different wheat-Th. intermedium translocation lines, the stripe rust resistance gene YrT14 was located to an 88.1 Mb interval from 636.7 to 724.8 Mb on Th. intermedium chromosome 19 corresponding to 7J or 7Js.

6.
Plant J ; 114(6): 1475-1489, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919201

RESUMO

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive diseases of wheat (Triticum aestivum) around the world. FHB causes significant yield losses and reduces grain quality. The lack of resistance resources is a major bottleneck for wheat FHB resistance breeding. As a wheat relative, Thinopyrum elongatum contains many genes that can be used for wheat improvement. Although the novel gene Fhb-7EL was mapped on chromosome 7EL of Th. elongatum, successful transfer of the FHB resistance gene into commercial wheat varieties has not been reported. In this study, we developed 836 wheat-Th. elongatum translocation lines of various types by irradiating the pollen of the wheat-Th. elongatum addition line CS-7EL at the flowering stage, among which 81 were identified as resistant to FHB. By backcrossing the FHB-resistant lines with the main cultivar Jimai 22, three wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, were successfully applied in wheat breeding without yield penalty. Combining karyotype and phenotype analyses, we mapped the Fhb-7EL gene to the distal end of chromosome 7EL. Five molecular markers linked with the FHB resistance interval were developed, which facilitates molecular marker-assisted breeding. Altogether, we successfully applied alien chromatin with FHB resistance from Th. elongatum in wheat breeding without yield penalty. These newly developed FHB-resistant wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, can be used as novel resistance resources for wheat breeding.


Assuntos
Fusarium , Triticum , Triticum/genética , Melhoramento Vegetal , Marcadores Genéticos , Poaceae/genética , Doenças das Plantas/genética , Resistência à Doença/genética
8.
Plant J ; 113(3): 536-545, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534091

RESUMO

Polyploidy is a common mode of evolution in flowering plants. Both the natural tetraploid Thinopyrum elongatum and the diploid one from the same population show a diploid-like pairing in meiosis. However, debate on the chromosome composition and origin of the tetraploid Th. elongatum is ongoing. In the present study, we obtained the induced tetraploid Th. elongatum and found that the induced and natural tetraploids are morphologically close, except for slower development and lower seed setting. Using probes developed from single chromosome microdissection and a Fosmid library, obvious differentiations were discovered between two chromosome sets (E1 and E2 ) of the natural tetraploid Th. elongatum but not the induced one. Interestingly, hybrid F1 derived from the two different wheat-tetraploid Th. elongatum amphiploids 8802 and 8803 produced seeds well. More importantly, analysis of meiosis in F2 individuals revealed that chromosomes from E1 and E2 could pair well on the durum wheat background with the presence of Ph1. No chromosome set differentiation on the FISH level was discovered from the S1 to S4 generations in the induced one. In metaphase of the meiosis first division in the natural tetraploid, more pairings were bivalents and fewer quadrivalents with ratio of 13.94 II + 0.03 IV (n = 31). Chromosome pairing configuration in the induced tetraploid is 13.05 II + 0.47 IV (n = 19), with the quadrivalent ratio being only slightly higher than the ratio in the natural tetraploid. Therefore, the natural tetraploid Th. elongatum is of autoploid origin and the induced tetraploid Th. elongatum evolutionarily underwent rapid diploidization in the low generation.


Assuntos
Cromossomos de Plantas , Tetraploidia , Cromossomos de Plantas/genética , Poaceae/genética , Triticum/genética , Meiose/genética , Pareamento Cromossômico/genética
9.
Plants (Basel) ; 11(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015378

RESUMO

Encoding a glutathione S-transferase (GST) and conferring resistance to Fusarium head blight (FHB), Fhb7 was successfully isolated from the newly assembled Thinopyrum elongatum genome by researchers, with blasting searches revealing that Thinopyrum gained Fhb7 through horizontal gene transfer from an endophytic Epichloë species. On the contrary, our molecular evidence reveals that the homologs of Fhb7 are distributed commonly in Triticeae. Other than Thinopyrum, the Fhb7 homologs were also detected in four other genera, Elymus, Leymus, Roegneria and Pseudoroegneria, respectively. Sequence comparisons revealed that the protein sequences were at least 94% identical across all of the Fhb7 homologs in Triticeae plants, which in turn suggested that the horizontal gene transfer of the Fhb7 might have occurred before Triticeae differentiation instead of Thinopyrum. The multiple Fhb7 homologs detected in some Triticeae accessions and wheat-Thinopyrum derivatives might be attributed to the alloploid nature and gene duplication during evolution. In addition, we discovered that some wheat-Thinopyrum derivatives carrying the Fhb7 homologs had a completely different reaction to Fusarium head blight, which made us question the ability of the GST-encoding Fhb7 to resist FHB.

10.
Theor Appl Genet ; 135(7): 2469-2480, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35676422

RESUMO

KEY MESSAGE: Complete new wheat-rye disomic, telosomic addition lines and various chromosomal aberrations were developed and characterized by molecular cytogenetic method as novel chromosome engineering materials. A new stem rust resistance (Ug99) gene was located on 3RL. Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating fungal disease worldwide. A recently emerged great threat to global wheat production is Pgt strain Ug99 and its derivatives, which have overcome most of the commonly used resistance genes. Rye (Secale cereale L.), closely related to wheat (Triticum aestivum L.), is a significant and valuable resource of resistance genes for wheat germplasm improvement. It is of great importance and urgency to identify new resistance gene sources of rye and transfer them into wheat. In this study, two complete sets of wheat-rye addition lines were established through wide hybridization, chromosome doubling and backcrossing. A wheat-rye 3RL telosomic addition line was identified with high resistance to stem rust strain Ug99. PCR-based markers specific for the rye chromosome were developed. Furthermore, abundant chromosomal aberrations such as minichromosomes, ring chromosomes as well as centromere reduction and expansion were identified in the progeny of wheat-rye addition lines by multicolor GISH and FISH. The line carrying a novel resistance gene to stem rust can be utilized as a bridge material for wheat disease resistance breeding. The chromosomal and centromeric variation within the wheat-rye hybrids can further contribute to genetic diversity of their offspring.


Assuntos
Basidiomycota , Secale , Aberrações Cromossômicas , Cromossomos de Plantas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Puccinia , Secale/genética , Secale/microbiologia
11.
Plant Biotechnol J ; 20(11): 2051-2063, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35722725

RESUMO

Centromeres are the genomic regions that organize and regulate chromosome behaviours during cell cycle, and their variations are associated with genome instability, karyotype evolution and speciation in eukaryotes. The highly repetitive and epigenetic nature of centromeres were documented during the past half century. With the aid of rapid expansion in genomic biotechnology tools, the complete sequence and structural organization of several plant and human centromeres were revealed recently. Here, we systematically summarize the current knowledge of centromere biology with regard to the DNA compositions and the histone H3 variant (CENH3)-dependent centromere establishment and identity. We discuss the roles of centromere to ensure cell division and to maintain the three-dimensional (3D) genomic architecture in different species. We further highlight the potential applications of manipulating centromeres to generate haploids or to induce polyploids offspring in plant for breeding programs, and of targeting centromeres with CRISPR/Cas for chromosome engineering and speciation. Finally, we also assess the challenges and strategies for de novo design and synthesis of centromeres in plant artificial chromosomes. The biotechnology applications of plant centromeres will be of great potential for the genetic improvement of crops and precise synthetic breeding in the future.


Assuntos
Centrômero , Melhoramento Vegetal , Humanos , Centrômero/genética , Cromossomos de Plantas/genética , Plantas/genética , Epigenômica , Biotecnologia
13.
Plant Biotechnol J ; 16(11): 1848-1857, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29569825

RESUMO

Previous studies revealed that the promoters for driving both Cas9 and sgRNAs are quite important for efficient genome editing by CRISPR/Cas9 in plants. Here, we report our results of targeted genome editing using the maize dmc1 gene promoter combined with the U3 promoter for Cas9 and sgRNA, respectively. Three loci in the maize genome were selected for targeting. The T0 plants regenerated were highly efficiently edited at the target sites with homozygous or bi-allelic mutants accounting for about 66%. The mutations in T0 plants could be stably transmitted to the T1 generation, and new mutations could be generated in gametes or zygotes. Whole-genome resequencing indicated that no off-target mutations could be detected in the predicted loci with sequence similarity to the targeted site. Our results show that the dmc1 promoter-controlled (DPC) CRISPR/Cas9 system is highly efficient in maize and provide further evidence that the optimization of the promoters used for the CRISPR/Cas9 system is important for enhancing the efficiency of targeted genome editing in plants. The evolutionary conservation of the dmc1 gene suggests its potential for use in other plant species.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes/métodos , Zea mays/genética , Proteína 9 Associada à CRISPR/metabolismo , Genoma de Planta/genética , Mutação/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas
14.
J Genet Genomics ; 44(11): 531-539, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29169922

RESUMO

Recently, engineered minichromosomes have been produced using a telomere-mediated truncation technique in some plants. However, the study on transferring genes to minichromosomes is very limited. Here, telomere-mediated truncation was successfully performed in common wheat (Triticum aestivum) to generate stable truncated chromosomes accompanied by a relatively high frequency of chromosomal rearrangements. After the cross between transgenic parents, a promoter-less DsRed gene in a chromosome from one parent was transferred to another chromosome from the other parent at the site behind a maize ubiquitin promoter via the Cre/lox system. DsRed transcripts and red fluorescent proteins were detected in the recombinant plants. In one such seedling, transgenic signals were detected at the centric terminus of chromosome 4D and the distal terminus of chromosome 3A. Clear translocations could be detected at the transgenic loci of these two chromosomes. Intriguingly, signals of centric-specific sequences were co-localized with the translocated D-group chromosomal segment in the terminal region of chromosome 3A. Our results indicate that the Cre/lox system induces the gene swapping to the target chromosome and non-homologous chromosomal recombination simultaneously. These approaches could offer a platform to transfer large DNA fragments or even terminal chromosomal segments to other chromosomes of the natural genome.


Assuntos
Cromossomos Artificiais/genética , Técnicas de Transferência de Genes , Engenharia Genética , Plantas Geneticamente Modificadas/genética , Recombinação Genética , Triticum/genética , Cromossomos de Plantas/genética , Rearranjo Gênico , Genes Reporter/genética , Hibridização in Situ Fluorescente , Proteínas Luminescentes/genética , Reação em Cadeia da Polimerase em Tempo Real , Plântula , Telômero/genética , Transgenes/genética , Translocação Genética
15.
Plant J ; 91(2): 199-207, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370580

RESUMO

1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.


Assuntos
Centrômero , Secale/genética , Translocação Genética , Triticum/genética , Centrômero/genética , Quimera , Cromossomos de Plantas , Hibridização in Situ Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA