Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39316676

RESUMO

Chronic Obstructive Pulmonary Disease (COPD), comprised of chronic bronchitis and emphysema, is a leading cause of morbidity and mortality worldwide. MAP2K (mitogen-activated protein 2 kinase) pathway activation is present in COPD lung tissue and a genetic polymorphism in Map2k1 associates with FEV1 decline in COPD, suggesting it may contribute to disease pathogenesis. To test the functional contribution of Map2k1 in cigarette smoke (CS)-induced lung inflammation, we used a short-term CS exposure model in mice deficient in myeloid Map2k1 (LysmCre+Mek1fl) and wild-type mice (Mek1fl). Mice deficient in myeloid Map2k1 had enhanced CS-induced lung inflammation characterized by increased neutrophil recruitment, augmented expression of elastolytic matrix metalloproteinases, and increased type I interferon-stimulated gene expression. The augmented neutrophilic inflammatory response could be abrogated by IFNAR1 blockade. These findings indicate that myeloid Map2k1 regulates the immune response to CS via inhibition of the type I interferon pathway. Overall, these results suggest that Map2k1 is a critical determinant in modulating the severity of CS-induced lung inflammation and its expression is protective.

2.
Alpha Psychiatry ; 25(3): 413-420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39148597

RESUMO

Objective: Schizophrenia is often associated with volumetric reductions in cortices and expansions in basal ganglia, particularly the putamen. Recent genome-wide association studies have highlighted the significance of variants in the 3' regulatory region adjacent to the kinectin 1 gene (KTN1) in regulating gray matter volume (GMV) of the putamen. This study aimed to comprehensively investigate the involvement of this region in schizophrenia. Methods: We analyzed 1136 single-nucleotide polymorphisms (SNPs) covering the entire 3' regulatory region in 4 independent dbGaP samples (4604 schizophrenia patients vs. 4884 healthy subjects) and 3 independent Psychiatric Genomics Consortium samples (107 240 cases vs. 210 203 controls) to identify consistent associations. Additionally, we examined the regulatory effects of schizophrenia-associated alleles on KTN1 mRNA expression in 16 brain areas among 348 subjects, as well as GMVs of 7 subcortical nuclei in 38 258 subjects, and surface areas (SA) and thickness (TH) of the entire cortex and 34 cortical areas in 36 936 subjects. Results: The major alleles (f > 0.5) of 25 variants increased (ß > 0) the risk of schizophrenia across 2 to 5 independent samples (8.4 × 10-4 ≤ P ≤ .049). These schizophrenia-associated alleles significantly elevated (ß > 0) GMVs of basal ganglia, including the putamen (6.0 × 10-11 ≤ P ≤ 1.1 × 10-4), caudate (8.7 × 10-4 ≤ P ≤ 9.4 × 10-3), pallidum (P = 6.0 × 10-4), and nucleus accumbens (P = 2.7 × 10-5). Moreover, they potentially augmented (ß > 0) the SA of posterior cingulate and insular cortices, as well as the TH of frontal (pars triangularis and medial orbitofrontal), parietal (superior, precuneus, and inferior), and temporal (transverse) cortices, but potentially reduced (ß < 0) the SA of the whole, frontal (medial orbitofrontal), and temporal (pole, superior, middle, and entorhinal) cortices, as well as the TH of rostral middle frontal and superior frontal cortices (8.9 × 10-4 ≤ P ≤ .050). Conclusion: Our findings identify significant and functionally relevant risk alleles in the 3' regulatory region adjacent to KTN1, implicating their crucial roles in the development of schizophrenia.

3.
Front Artif Intell ; 7: 1236310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161792

RESUMO

The UN Sustainable Development Goals (SDGs) present a challenge due to their potential for conflicting objectives, which hinders their effective implementation. In order to address the complexity of sustainability issues, a framework capable of capturing the specificity of diverse sustainability issues while offering a common methodology applicable across contexts is required. Co-creative communication can be regarded as a key source of uncertainty within functional systems, as it can be instrumental in realizing and sustaining sustainability. In this regard, the studies in Constructive approaches to Co-creative Communication (CCC), particularly those employing artificial intelligence (AI) methodologies such as computational social science and innovation studies, hold significant value for both theoretical and applied sustainability research. However, existing CCC frameworks cannot be directly applied to sustainability research. This work bridges this gap by proposing a framework that outlines a general approach to establishing formalized definitions of sustainability from the lens of communication. This approach enables the direct application of CCC models to sustainability studies. The framework is based on systems theory and the methodologies of artificial intelligence, including computational/symbolic modeling and formal methods. This framework emphasizes the social function of co-creative communication and the interaction between the innovation process and the sustainability of the system. It can be concluded that the application of our framework enables the achievements of CCC to be directly applied to sustainability research. Researchers from different disciplines are therefore able to establish their own specific definitions of sustainability, which are tailored to their particular concerns. Our framework lays the groundwork for future sustainability studies that employs CCC, facilitating the integration of CCC insights into sustainability research and application. The outcomes of computational creativity research based on AI technologies, such as distributed artificial intelligence and self-organizing networks, can deepen the understanding of sustainability mechanisms and drive their practical applications. Furthermore, the functional role of co-creative communication in societal sustainability proposed in this work offers a novel perspective for future discussions on the evolutionary adaptation of co-creative communication.

4.
J ECT ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39178051

RESUMO

OBJECTIVES: A seizure lasting >15 s has been considered to indicate treatment for magnetic seizure therapy (MST), a modification of electroconvulsive therapy (ECT), without much validation. This study aimed to investigate whether this seizure duration was suitable for the treatment of schizophrenia. METHODS: Altogether, 34 and 33 in-patients with schizophrenia received 10 sessions of MST and ECT, respectively. Clinical symptoms were assessed using the Positive and Negative Symptom Scale at baseline and at the 4-week follow-up. Electroencephalogram (EEG) was monitored during each MST or ECT treatment using bifrontal electrodes. RESULTS: The proportion of participants who achieved the 15-second threshold was only 28.6% in the MST group, with a significant difference between responders and nonresponders. For patients receiving MST, the average EEG seizure duration correlated with the percentage of Positive and Negative Symptom Scale reduction (t(32) = 2.51, P = 0.017, uncorrected; t(32) = 2.00, P = 0.055, corrected with clinical characteristics). The average EEG seizure duration predicted the clinical response at a trend level (Z = 1.76, P = 0.078) with an optimal cutoff of 11.3 seconds. All patients in the ECT group achieved the 15-second threshold. However, their average EEG seizure duration was uncorrelated with clinical improvement. CONCLUSIONS: The duration of EEG seizures may be associated with the antipsychotic effects of MST. This association may have been influenced by various clinical and technical factors. More research is needed to define the specific criteria for adequate MST in schizophrenia in order to achieve personalized dosing.

5.
Mikrochim Acta ; 191(8): 488, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066796

RESUMO

Hydroxyl radical (·OH) scavenging capacity (HOSC) estimation is essential for evaluating antioxidants, natural extracts, or drugs against clinical diseases. While nanozymes offer advantages in related applications, they still face limitations in activity and selectivity. In response, this work showcases the fabrication of laminarin-modulated osmium (laminarin-Os) nanoclusters (1.45 ± 0.05 nm), functioning as peroxidase-like nanozymes within a colorimetric assay tailored for rational HOSC estimation. This study validates both the characterization and remarkable stability of laminarin-Os. By leveraging the abundant surface negative charges of laminarin-Os and the surface hydroxyls of laminarin, oxidation reactions are facilitated, augmenting laminarin-Os's affinity for 3,3',5,5'-tetramethylbenzidine (TMB) (KM = 0.04 mM). This enables the laminarin-Os-based colorimetric assay to respond to ·OH more effectively than citrate-, albumin-, or other polysaccharides-based Os. In addition, experimental results also validate the selective peroxidase-like behavior of laminarin-Os under acidic conditions. Antioxidants like ascorbic acid, glutathione, tannic acid, and cysteine inhibit absorbance at 652 nm in the colorimetric platform using laminarin-Os's peroxidase-like activity. Compared with commercial kits, this assay demonstrates superior sensitivity (e.g., responds to ascorbic acid 0.01-0.075 mM, glutathione 1-15 µg/mL, tannic acid 0.5-5 µM, and monoammonium glycyrrhizinate cysteine 1.06-10.63 µM) and HOSC testing for glutathione, tannic acid, and monoammonium glycyrrhizinate cysteine. Overall, this study introduces a novel Os nanozyme with exceptional TMB affinity and ·OH selectivity, paving the way for HOSC estimation in biomedical research, pharmaceutical analysis, drug quality control, and beyond.


Assuntos
Benzidinas , Sequestradores de Radicais Livres , Glucanos , Radical Hidroxila , Osmio , Benzidinas/química , Colorimetria/métodos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Glucanos/química , Radical Hidroxila/química , Radical Hidroxila/análise , Osmio/química , Oxirredução , Peroxidase/química , Peroxidase/metabolismo
7.
J Affect Disord ; 361: 637-650, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38914161

RESUMO

BACKGROUND: Pathological changes, such as microglia activation in the hippocampus frequently occur in individuals with animal models of depression; however, they may share a common cellular mechanism, such as endoplasmic reticulum (ER) stress and mitochondrial dysfunction. Mitochondria associated membranes (MAMs) are communication platforms between ER and mitochondria. This study aimed to investigate the role of intracellular stress responses, especially structural and functional changes of MAMs in depression. METHODS: We used chronic social defeat stress (CSDS) to mimic depression in C57 mice to investigate the pathophysiological changes in the hippocampus associated with depression and assess the antidepressant effect of electroacupuncture (EA). Molecular, histological, and electron microscopic techniques were utilized to study intracellular stress responses, including the ER stress pathway reaction, mitochondrial damage, and structural and functional changes in MAMs in the hippocampus after CSDS. Proteomics technology was employed to explore protein-level changes in MAMs caused by CSDS. RESULTS: CSDS caused mitochondrial dysfunction, ER stress, closer contact between ER and mitochondria, and enrichment of functional protein clusters at MAMs in hippocampus along with depressive-like behaviors. Also, EA showed beneficial effects on intracellular stress responses and depressive-like behaviors in CSDS mice. LIMITATION: The cellular specificity of MAMs related protein changes in CSDS mice was not explored. CONCLUSIONS: In the hippocampus, ER stress and mitochondrial damage occur, along with enriched mitochondria-ER interactions and MAM-related protein enrichment, which may contribute to depression's pathophysiology. EA may improve depression by regulating intracellular stress responses.


Assuntos
Depressão , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Hipocampo , Camundongos Endogâmicos C57BL , Estresse Psicológico , Animais , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos , Estresse do Retículo Endoplasmático/fisiologia , Masculino , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Mitocôndrias , Eletroacupuntura , Membranas Mitocondriais/metabolismo , Derrota Social , Comportamento Animal/fisiologia , Membranas Associadas à Mitocôndria
8.
PLoS One ; 19(6): e0304686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837998

RESUMO

Microplastics, which are tiny plastic particles less than 5 mm in diameter, are widely present in the environment, have become a serious threat to aquatic life and human health, potentially causing ecosystem disorders and health problems. The present study aimed to investigate the effects of microplastics, specifically microplastics-polystyrene (MPs-PS), on the structural integrity, gene expression related to tight junctions, and gut microbiota in mice. A total of 24 Kunming mice aged 30 days were randomly assigned into four groups: control male (CM), control female (CF), PS-exposed male (PSM), and PS-exposed female (PSF)(n = 6). There were significant differences in villus height, width, intestinal surface area, and villus height to crypt depth ratio (V/C) between the PS group and the control group(C) (p <0.05). Gene expression analysis demonstrated the downregulation of Claudin-1, Claudin-2, Claudin-15, and Occludin, in both duodenum and jejunum of the PS group (p < 0.05). Analysis of microbial species using 16S rRNA sequencing indicated decreased diversity in the PSF group, as well as reduced diversity in the PSM group at various taxonomic levels. Beta diversity analysis showed a significant difference in gut microbiota distribution between the PS-exposed and C groups (R2 = 0.113, p<0.01), with this difference being more pronounced among females exposed to MPs-PS. KEGG analysis revealed enrichment of differential microbiota mainly involved in seven signaling pathways, such as nucleotide metabolism(p<0.05). The relative abundance ratio of transcriptional pathways was significantly increased for the PSF group (p<0.01), while excretory system pathways were for PSM group(p<0.05). Overall findings suggest that MPs-PS exhibit a notable sex-dependent impact on mouse gut microbiota, with a stronger effect observed among females; reduced expression of tight junction genes may be associated with dysbiosis, particularly elevated levels of Prevotellaceae.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Poliestirenos , Junções Íntimas , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Camundongos , Masculino , Feminino , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , RNA Ribossômico 16S/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Ocludina/metabolismo , Ocludina/genética , Claudinas/genética , Claudinas/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética
9.
Int J Biol Macromol ; 267(Pt 1): 131450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588838

RESUMO

With the increasing severity of energy shortages and environmental pollution, there is an urgent need for advanced thermal insulation materials with excellent comprehensive performance, including low thermal conductivity, high flame resistance, and strong compressive strength. Herein, an anisotropic composite aerogel based on cellulose nanofibers (CNF), calcium alginate (CA), and boric acid (BA) is fabricated using a directional freeze-drying strategy. The CA and BA, as double cross-linking agents, associated with oriented porous structure provide the resultant aerogel with good mechanical strength. Additionally, self-flame retardant CA and BA act as synergistic flame retardants that endow the aerogel with excellent flame retardance properties such as a limiting oxygen index value of 44.2 %, UL-94 V-0 rating, and low heat release. Furthermore, this composite aerogel exhibits outstanding thermal insulation performance with a low thermal conductivity of approximately 30 mW m-1 K-1. Therefore, the composite aerogel is expected to have a wide potential application in areas such as construction, automotive industry, batteries, petrochemical pipelines, and high-temperature reaction devices.


Assuntos
Alginatos , Ácidos Bóricos , Celulose , Retardadores de Chama , Géis , Nanofibras , Condutividade Térmica , Nanofibras/química , Ácidos Bóricos/química , Celulose/química , Alginatos/química , Géis/química , Anisotropia , Porosidade
10.
Plants (Basel) ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38592818

RESUMO

Qinghai spruce forests, found in the Qilian mountains, are a typical type of water conservation forest and play an important role in regulating the regional water balance and quantifying the changes and controlling factors for evapotranspiration (ET) and its components, namely, transpiration (T), evaporation (Es) and canopy interceptions (Ei), of the Qinghai spruce, which may provide rich information for improving water resource management. In this study, we partitioned ET based on the assumption that total ET equals the sum of T, Es and Ei, and then we analyzed the environmental controls on ET, T and Es. The results show that, during the main growing seasons of the Qinghai spruce (from May to September) in the Qilian mountains, the total ET values were 353.7 and 325.1 mm in 2019 and 2020, respectively. The monthly dynamics in the daily variations in T/ET and Es/ET showed that T/ET increased until July and gradually decreased afterwards, while Es/ET showed opposite trends and was mainly controlled by the amount of precipitation. Among all the ET components, T always occupied the largest part, while the contribution of Es to ET was minimal. Meanwhile, Ei must be considered when partitioning ET, as it accounts for a certain percentage (greater than one-third) of the total ET values. Combining Pearson's correlation analysis and the boosted regression trees method, we concluded that net radiation (Rn), soil temperature (Ts) and soil water content (SWC) were the main controlling factors for ET. T was mainly determined by the radiation and soil hydrothermic factors (Rn, photosynthetic active radiation (PAR) and TS30), while Es was mostly controlled by the vapor pressure deficit (VPD), atmospheric precipitation (Pa), throughfall (Pt) and air temperature (Ta). Our study may provide further theoretical support to improve our understanding of the responses of ET and its components to surrounding environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA