Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Sci Adv ; 10(19): eadn6642, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718123

RESUMO

Existing grippers for unmanned aerial vehicle (UAV) manipulation have persistent challenges, highlighting a need for grippers that are soft, self-adaptive, self-contained, easy to control, and lightweight. Inspired by tendril plants, we propose a class of soft grippers that are voltage driven and based on winding deformation for self-adaptive grasping. We design two types of U-shaped soft eccentric circular tube actuators (UCTAs) and propose using the liquid-gas phase-transition mechanism to actuate UCTAs. Two types of UCTAs are separately cross-arranged to construct two types of soft grippers, forming self-contained systems that can be directly driven by voltage. One gripper inspired by tendril climbers can be used for delicate grasping, and the other gripper inspired by hook climbers can be used for strong grasping. These grippers are ideal for deployment in UAVs because of their self-adaptability, ease of control, and light weight, paving the way for UAVs to achieve powerful manipulation with low positioning accuracy, no complex grasping planning, self-adaptability, and multiple environments.

2.
Cell Rep ; 43(5): 114174, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38700982

RESUMO

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.

3.
J Oral Microbiol ; 16(1): 2344272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698893

RESUMO

Objective: To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods: In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results: Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion: Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.

4.
ACS Nano ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752333

RESUMO

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.

5.
Int J Biol Macromol ; 270(Pt 1): 132344, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754666

RESUMO

Hydroxypropyl-gamma-cyclodextrin (HPγCD) inclusion complex nanofibers (Lut/HPγCD-IC-NF) containing Luteolin (Lut) were prepared by electrospinning technology. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectra confirmed the formation of Lut/HPγCD-IC-NF. Scanning electron microscopy (SEM) images showed that the morphology of Lut/HPγCD-IC-NF was uniform and bead-free, suggesting that self-assembled aggregates, macromolecules with higher molecular weights, were formed by strong hydrogen bonding interactions between the cyclodextrin inclusion complexes. Confocal laser scanning microscopy (CLSM) images showed that Lut was distributed in Lut/HPγCD-IC-NF. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed the change in chemical shift of the proton peak between Lut and HPγCD, confirming the formation of inclusion complex. Thermogravimetric analysis (TGA) proved that Lut/HPγCD-IC-NF had good thermal stability. The phase solubility test confirmed that HPγCD had a solubilizing effect on Lut. When the solubility of HPγCD reached 10 mM, the solubility of Lut increased by 15-fold. The drug loading test showed that the content of Lut in fibers reached 8.57 ± 0.02 %. The rapid dissolution experiment showed that Lut/HPγCD-IC-NF dissolved within 3 s. The molecular simulation provides three-dimensional evidence for the formation of inclusion complexes between Lut and HPγCD. Antibacterial experiments showed that Lut/HPγCD-IC-NF had enhanced antibacterial activity against S. aureus. Lut/HPγCD-IC-NF exhibited excellent antioxidant properties with a free radical scavenging ability of 89.5 ± 1.1 %. In vitro release experiments showed Lut/HPγCD-IC-NF had a higher release amount of Lut. In conclusion, Lut/HPγCD-IC-NF improved the physicochemical properties and bioavailability of Lut, providing potential applications of Lut in the pharmaceutical field.

6.
Ecotoxicol Environ Saf ; 278: 116440, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733806

RESUMO

The distribution of polycyclic aromatic hydrocarbons (PAHs) in the ocean is affected by the sorption-desorption process of sediment particles. This process is determined by the concentration of PAHs in seawater, water temperature, and organic matter content of sediment particles. Quantitative relationships between the net sorption rates (=the difference of sorption and desorption rates) and these factors have not been established yet and used in PAH transport models. In this study, phenanthrene was chosen as the representative of PAHs. Three groups of experimental data were collected to address the dependence of the net sorption processes on the initial concentration, water temperature, and organic carbon content representing organic matter content. One-site and two-compartment mass-transfer models were tested to represent the experimental data using various parameters. The results showed that the two-compartment mass-transfer model performed better than the one-site mass-transfer model. The parameters of the two-compartment mass-transfer model include the sorption rate coefficients kafand kas (L g-1 min-1), and the desorption rate coefficients kdf and kds (min-1). The parameters at different temperatures and organic carbon contents were obtained by numerical simulations. Linear relationships were obtained between the parameters and water temperature, as well as organic carbon content. kaf, kas and kdf decreased linearly, while kds increased linearly with temperature. kaf, kas and kdf increased linearly, while kds decreased linearly with organic carbon content. The r2 values between the simulation results based on the relationships and the experimental results reached 0.96-0.99, which supports the application of the model to simulate sorption-desorption processes at different water temperatures and organic carbon contents in a realistic ocean.

7.
Adv Sci (Weinh) ; : e2308835, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647364

RESUMO

Soft material-based robots, known for their safety and compliance, are expected to play an irreplaceable role in human-robot collaboration. However, this expectation is far from real industrial applications due to their complex programmability and poor motion precision, brought by the super elasticity and large hysteresis of soft materials. Here, a soft collaborative robot (Soft Co-bot) with intuitive and easy programming by contact-based drag teaching, and also with exceptional motion repeatability (< 0.30% of body length) and ultra-low hysteresis (< 2.0%) is reported. Such an unprecedented capability is achieved by a biomimetic antagonistic design within a pneumatic soft robot, in which cables are threaded to servo motors through tension sensors to form a self-sensing system, thus providing both precise actuation and dragging-aware collaboration. Hence, the Soft Co-bots can be first taught by human drag and then precisely repeat various tasks on their own, such as electronics assembling, machine tool installation, etc. The proposed Soft Co-bots exhibit a high potential for safe and intuitive human-robot collaboration in unstructured environments, promoting the immediate practical application of soft robots.

8.
AoB Plants ; 16(2): plae019, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38660049

RESUMO

It is of great significance to study the plant morphological structure for improving crop yield and achieving efficient use of resources. Three dimensional (3D) information can more accurately describe the morphological and structural characteristics of crop plants. Automatic acquisition of 3D information is one of the key steps in plant morphological structure research. Taking wheat as the research object, we propose a point cloud data-driven 3D reconstruction method that achieves 3D structure reconstruction and plant morphology parameterization at the phytomer scale. Specifically, we use the MVS-Pheno platform to reconstruct the point cloud of wheat plants and segment organs through the deep learning algorithm. On this basis, we automatically reconstructed the 3D structure of leaves and tillers and extracted the morphological parameters of wheat. The results show that the semantic segmentation accuracy of organs is 95.2%, and the instance segmentation accuracy AP50 is 0.665. The R2 values for extracted leaf length, leaf width, leaf attachment height, stem leaf angle, tiller length, and spike length were 0.97, 0.80, 1.00, 0.95, 0.99, and 0.95, respectively. This method can significantly improve the accuracy and efficiency of 3D morphological analysis of wheat plants, providing strong technical support for research in fields such as agricultural production optimization and genetic breeding.

9.
Avian Pathol ; : 1-10, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38563198

RESUMO

Avian influenza (AI), caused by H9N2 subtype avian influenza virus (AIV), poses a serious threat to poultry farming and public health due to its transmissibility and pathogenicity. The PB2 protein is a major component of the viral RNA polymerase complex. It is of great importance to identify the antigenic determinants of the PB2 protein to explore the function of the PB2 protein. In this study, the PB2 sequence of H9N2 subtype AIV, from 1090 to 1689 bp, was cloned and expressed. The recombinant PB2 protein with cutting gel was used to immunize BALB/c mice. After cell fusion, the hybridoma cell lines secreting monoclonal antibodies (mAbs) targeting the PB2 protein were screened by indirect ELISA and western blotting, and the antigenic epitopes of mAbs were identified by constructing truncated overlapping fragments in the PB2 protein of H9N2 subtype AIV. The results showed that three hybridoma cell lines (4B7, 4D10, and 5H1) that stably secreted mAbs specific to the PB2 protein were screened; the heavy chain of 4B7 was IgG2α, those of 4D10 and 5H1 were IgG1, and all three mAbs had kappa light chain. Also, the minimum B-cell epitope recognized was 475LRGVRVSK482 and 528TITYSSPMMW537. Homology analysis showed that these two epitopes were conserved among the different subtypes of AIV strains and located on the surface of the PB2 protein. The above findings provide an experimental foundation for further investigation of the function of the PB2 protein and developing monoclonal antibody-based diagnostic kits.

10.
Sci Total Environ ; 930: 172767, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670358

RESUMO

Plant and microbial diversity plays vital roles in soil organic carbon (SOC) accumulation during ecosystem restoration. However, how soil microbial diversity mediates the positive effects of plant diversity on carbon accumulation during vegetation restoration remains unclear. We conducted a large-scale meta-analysis with 353 paired observations from 65 studies to examine how plant and microbial diversity changed over 0-160 years of natural restoration and its connection to SOC accrual in the topsoil (0-10 cm). Results showed that natural restoration significantly increased plant aboveground biomass (122.09 %), belowground biomass (153.05 %), and richness (21.99 %) and SOC accumulation (32.34 %) but had no significant impact on microbial diversity. Over time, bacterial and fungal richness increased and then decreased. The responses of major microbial phyla, in terms of relative abundance, varied across restoration and ecosystem types. Specifically, Ascomycota and Zygomycota decreased more under farmland abandonment than under grazing exclusion. In forest, Bacteroidetes, Ascomycota, and Zygomycota significantly decreased after natural restoration. The increase in SOC and Basidiomycota was higher in forest than in grassland. Based on standardized estimates, structural equation modeling showed that plant diversity had the highest positive effect (0.55) on SOC accrual, and while fungal diversity (0.15) also had a positive effective, bacterial diversity (-0.20) had a negative effect. Plant diversity promoted SOC accumulation by directly impacting biomass and soil moisture and total nitrogen and indirectly influencing soil microbial richness. This meta-analysis highlights the significant roles of plant diversity and microbial diversity in carbon accumulation during natural restoration and elucidates their relative contributions to carbon accumulation, thereby aiding in more precise predictions of soil carbon sequestration.


Assuntos
Carbono , Ecossistema , Fungos , Plantas , Microbiologia do Solo , Solo , Carbono/análise , Solo/química , Bactérias , Biodiversidade , Recuperação e Remediação Ambiental/métodos
11.
J Ethnopharmacol ; 329: 118130, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565407

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (Bu Gu Zhi) is the fruit of Psoralea corylifolia L. (PCL) and has been used for centuries in traditional Chinese medicine formulas to treat osteoporosis (OP). A new drug called "BX" has been developed from PCL, but its mechanism for treating OP is not yet fully understood. AIM OF THE STUDY: To explore the mechanism of action of BX in the treatment of ovariectomy-induced OP based function-oriented multi-omics analysis of gut microbiota (GM) and metabolites. MATERIALS AND METHODS: C57BL/6 mice were bilaterally ovariectomized to replicate the OP model. The therapeutic efficacy of BX was evaluated by bone parameters (BMD, BV/TV, Tb.N, Tb.Sp), hematoxylin and eosin (H&E) staining results, and determination of bone formation markers procollagen type Ⅰ amino-terminal peptide (PⅠNP) and bone-specific alkaline phosphatase (BALP). Serum and fecal metabolomics and high-throughput 16S rDNA sequencing were performed to evaluate effects on endogenous metabolites and GM. In addition, an enzyme-based functional correlation algorithm (EBFC) algorithm was used to investigate functional correlations between GM and metabolites. RESULTS: BX improved OP in OVX mice by increasing BMD, BV/TV, serum PⅠNP, BALP, and improving Tb.N and Tb.Sp. A total of 59 differential metabolites were identified, and 9 metabolic pathways, including arachidonic acid metabolism, glycerophospholipid metabolism, purine metabolism, and tryptophan metabolism, were found to be involved in the progression of OP. EBFC analysis results revealed that the enzymes related to purine and tryptophan metabolism, which are from Lachnospiraceae_NK4A136_group, Blautia, Rs-E47_termite_group, UCG-009, and Clostridia_UCG-014, were identified as the intrinsic link between GM and metabolites. CONCLUSIONS: The regulation of GM and restoration of metabolic disorders may be the mechanisms of action of BX in alleviating OP. This research provides insights into the function-oriented mechanism discovery of traditional Chinese medicine in the treatment of OP.


Assuntos
Cumarínicos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Osteoporose , Ovariectomia , Psoralea , Animais , Psoralea/química , Feminino , Osteoporose/tratamento farmacológico , Cumarínicos/farmacologia , Cumarínicos/isolamento & purificação , Cumarínicos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Densidade Óssea/efeitos dos fármacos , Metabolômica , Modelos Animais de Doenças , Frutas , Multiômica
12.
BMC Genomics ; 25(1): 420, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684985

RESUMO

Goats have achieved global prominence as essential livestock since their initial domestication, primarily owing to their remarkable adaptability to diverse environmental and production systems. Differential selection pressures influenced by climate have led to variations in their physical attributes, leaving genetic imprints within the genomes of goat breeds raised in diverse agroecological settings. In light of this, our study pursued a comprehensive analysis, merging environmental data with single nucleotide polymorphism (SNP) variations, to unearth indications of selection shaped by climate-mediated forces in goats. Through the examination of 43,300 SNPs from 51 indigenous goat breeds adapting to different climatic conditions using four analytical methods: latent factor mixed models (LFMM), F-statistics (Fst), Extended haplotype homozygosity across populations (XPEHH), and spatial analysis method (SAM), A total of 74 genes were revealed to display clear signs of selection, which are believed to be influenced by climatic conditions. Among these genes, 32 were consistently identified by at least two of the applied methods, and three genes (DENND1A, PLCB1, and ITPR2) were confirmed by all four approaches. Moreover, our investigation yielded 148 Gene Ontology (GO) terms based on these 74 genes, underlining pivotal biological pathways crucial for environmental adaptation. These pathways encompass functions like vascular smooth muscle contraction, cellular response to heat, GTPase regulator activity, rhythmic processes, and responses to temperature stimuli. Of significance, GO terms about endocrine regulation and energy metabolic responses, key for local adaptation were also uncovered, including biological processes, such as cell differentiation, regulation of peptide hormone secretion, and lipid metabolism. These findings contribute to our knowledge of the genetic structure of climate-triggered adaptation across the goat genome and have practical implications for marker-assisted breeding in goats.


Assuntos
Clima , Genômica , Cabras , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Cabras/genética , Cabras/fisiologia , Genômica/métodos , Adaptação Fisiológica/genética , Cruzamento , Haplótipos
13.
J Hazard Mater ; 469: 134051, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508116

RESUMO

Coastal seas are important pools of persistent organic pollutants (POPs) discharged from land. Considering the complex conditions in coastal seas and various biochemical features of POPs, special temporal-spatial variations in POPs have been reported. To understand these variations, we developed a three-dimensional hydrodynamic-ecosystem-POP coupled model and applied it to the Yellow Sea. We selected two POP species (polychlorinated biphenyl congener 153 (PCB-153) and decabromodiphenyl ether (BDE-209)), which have different biochemical properties, as target materials. The dissolved PCB-153 simulated concentration was high in late spring and low in autumn, whereas that of BDE-209 was high in summer and low in winter. Both PCB-153 and BDE-209 showed high particle-bound concentrations in early spring. In summer, dissolved PCB-153 accumulated at the sea bottom, whereas dissolved BDE-209 accumulated at the sea surface. Seasonal and spatial variation differences in the two POPs are likely caused by greater Henry's Law Constant (H') and bioconcentration factor (BCF) of PCB-153 than that of BDE-209, which leads to higher volatilization and stronger absorption by the particles for PCB-153 than BDE-209. As a component of such differences, the "biological pump" of PCB-153 in the central Yellow Sea is more apparent than that of BDE-209.

14.
ACS Macro Lett ; 13(4): 401-406, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511967

RESUMO

In nature, proteins possess the remarkable ability to sense and respond to mechanical forces, thereby triggering various biological events, such as bone remodeling and muscle regeneration. However, in synthetic systems, harnessing the mechanical force to induce material growth still remains a challenge. In this study, we aimed to utilize low-frequency ultrasound (US) to activate horseradish peroxidase (HRP) and catalyze free radical polymerization. Our findings demonstrate the efficacy of this mechano-enzymatic chemistry in rapidly remodeling the properties of materials through cross-linking polymerization and surface coating. The resulting samples exhibited a significant enhancement in tensile strength, elongation, and Young's modulus. Moreover, the hydrophobicity of the surface could be completely switched within just 30 min of US treatment. This work presents a novel approach for incorporating mechanical sensing and rapid remodeling capabilities into materials.


Assuntos
Fenômenos Mecânicos , Polimerização , Módulo de Elasticidade , Resistência à Tração , Ultrassonografia
15.
HGG Adv ; 5(2): 100283, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38491773

RESUMO

Integrating results from genome-wide association studies (GWASs) and studies of molecular phenotypes such as gene expressions can improve our understanding of the biological functions of trait-associated variants and can help prioritize candidate genes for downstream analysis. Using reference expression quantitative trait locus (eQTL) studies, several methods have been proposed to identify gene-trait associations, primarily based on gene expression imputation. To increase the statistical power by leveraging substantial eQTL sharing across tissues, meta-analysis methods aggregating such gene-based test results across multiple tissues or contexts have been developed as well. However, most existing meta-analysis methods have limited power to identify associations when the gene has weaker associations in only a few tissues and cannot identify the subset of tissues in which the gene is "activated." For this, we developed a cross-tissue subset-based transcriptome-wide association study (CSTWAS) meta-analysis method that improves power under such scenarios and can extract the set of potentially associated tissues. To improve applicability, CSTWAS uses only GWAS summary statistics and pre-computed correlation matrices to identify a subset of tissues that have the maximal evidence of gene-trait association. Through numerical simulations, we found that CSTWAS can maintain a well-calibrated type-I error rate, improves power especially when there is a small number of associated tissues for a gene-trait association, and identifies an accurate associated tissue set. By analyzing GWAS summary statistics of three complex traits and diseases, we demonstrate that CSTWAS could identify biological meaningful signals while providing an interpretation of disease etiology by extracting a set of potentially associated tissues.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Transcriptoma/genética , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Locos de Características Quantitativas/genética
16.
J Colloid Interface Sci ; 663: 847-855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447399

RESUMO

Properly design and manufacture of bifunctional electrocatalysts with superb performance and endurance are crucial for overall water splitting. The interfacial engineering strategy is acknowledged as a promising approach to enhance catalytic performance of overall water splitting catalysts. Herein, the Ru nanoparticles modified Ni3Se4/Ni(OH)2 heterostructured nanosheets catalyst was constructed using a simple two-step hydrothermal process. The experimental results demonstrate that the abundant heterointerfaces between Ru and Ni3Se4/Ni(OH)2 can increase the number of active sites and effectively regulate the electronic structure, greatly accelerating the kinetics of the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER). As a result, the Ru/Ni3Se4/Ni(OH)2/NF catalyst exhibits the low overpotential of 102.8 mV and 334.5 mV at 100 mA cm-2 for HER and OER in alkaline medium, respectively. Furthermore, a two-electrode system composed of the Ru/Ni3Se4/Ni(OH)2/NF requires a battery voltage of just 1.51 V at 10 mA cm-2 and remains stable for 200 h at 500 mA cm-2. This work provides an effective strategy for constructing Ru-based heterostructured catalysts with excellent catalytic activity.

17.
Front Public Health ; 12: 1305746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532971

RESUMO

Background: Non-suicidal self-injury (NSSI) has become a significant public health issue, especially prevalent among adolescents. The complexity and multifactorial nature of NSSI necessitate a comprehensive understanding of its underlying causal factors. This research leverages the causal discovery methodology to explore these causal associations in children. Methods: An observational dataset was scrutinized using the causal discovery method, particularly employing the constraint-based approach. By integrating machine learning and causal inference techniques, the study aimed to determine direct causal relationships associated with NSSI. The robustness of the causal relationships was evaluated using three methods to construct and validate it: the PC (Peter and Clark) method, Fast Causal Inference (FCI) method, and the GAE (Graphical Autoencoder) method. Results: Analysis identified nine nodes with direct causal relationships to NSSI, including life satisfaction, depression, family dysfunction, sugary beverage consumption, PYD (positive youth development), internet addiction, COVID-19 related PTSD, academic anxiety, and sleep duration. Four principal causal pathways were identified, highlighting the roles of lockdown-induced lifestyle changes, screen time, positive adolescent development, and family dynamics in influencing NSSI risk. Conclusions: An in-depth analysis of the factors leading to Non-Suicidal Self-Injury (NSSI), highlighting the intricate connections among individual, family, and pandemic-related influences. The results, derived from computational causal analysis, underscore the critical need for targeted interventions that tackle these diverse causative factors.


Assuntos
Comportamento Autodestrutivo , Adolescente , Criança , Humanos , Ansiedade , Transtornos de Ansiedade , Relações Familiares , Fatores de Risco , Observação
18.
Insights Imaging ; 15(1): 76, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499835

RESUMO

BACKGROUND: To evaluate the technical success and patient safety of magnetic resonance-guided percutaneous microwave coagulation (MR-guided PMC) for breast malignancies. METHODS: From May 2018 to December 2019, 26 patients with breast tumors measuring 2 cm or less were recruited to participate in a prospective, single-institution clinical study. The primary endpoint of this study was the evaluation of treatment efficacy for each patient. Histochemical staining with α-nicotinamide adenine dinucleotide and reduced (NADH)-diaphorase was used to determine cell viability following and efficacy of PMC. The complications and self-reported sensations from all patients during and after ablation were also assessed. The technical success of the PMC procedure was defined when the area of the NADH-diaphorase negative region fully covered the hematoxylin-eosin (H&E) staining region in the tumor. RESULTS: All patients had a complete response to ablation with no residual carcinoma on histopathological specimen. The mean energy, ablation duration, and procedure duration per tumor were 36.0 ± 4.2 kJ, 252.9 ± 30.9 S, and 104.2 ± 13.5 min, respectively. During the ablation, 14 patients underwent prolonged ablation time, and 1 patient required adjusting of the antenna position. Eleven patients had feelings of subtle heat or swelling, and 3 patients experienced slight pain. After ablation, one patient took two painkillers because of moderate pain, and no patients had postoperative oozing or other complications after PMC. Induration around the ablation area appeared in 16 patients. CONCLUSION: MR-guided PMC of small breast tumors is feasible and could be applied in clinical practice in the future. CRITICAL RELEVANCE STATEMENT: MR-guided PMC of small breast tumors is feasible and could be applied in clinical practice in the future. KEY POINTS: • MR-guided PMC of small breast tumors is feasible. • PMC was successfully performed for all patients. • All patients were satisfied with the final cosmetic result.

19.
Plant Phenomics ; 6: 0160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510827

RESUMO

The 3-dimensional (3D) modeling of crop canopies is fundamental for studying functional-structural plant models. Existing studies often fail to capture the structural characteristics of crop canopies, such as organ overlapping and resource competition. To address this issue, we propose a 3D maize modeling method based on computational intelligence. An initial 3D maize canopy is created using the t-distribution method to reflect characteristics of the plant architecture. The subsequent model considers the 3D phytomers of maize as intelligent agents. The aim is to maximize the ratio of sunlit leaf area, and by iteratively modifying the azimuth angle of the 3D phytomers, a 3D maize canopy model that maximizes light resource interception can be constructed. Additionally, the method incorporates a reflective approach to optimize the canopy and utilizes a mesh deformation technique for detecting and responding to leaf collisions within the canopy. Six canopy models of 2 varieties plus 3 planting densities was constructed for validation. The average R2 of the difference in azimuth angle between adjacent leaves is 0.71, with a canopy coverage error range of 7% to 17%. Another 3D maize canopy model constructed using 12 distinct density gradients demonstrates the proportion of leaves perpendicular to the row direction increases along with the density. The proportion of these leaves steadily increased after 9 × 104 plants ha-1. This study presents a 3D modeling method for the maize canopy. It is a beneficial exploration of swarm intelligence on crops and generates a new way for exploring efficient resources utilization of crop canopies.

20.
J Glaucoma ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38506836

RESUMO

PRCIS: We developed a modified iris cerclage technique that improves best corrected visual acuity, pupillary parameters, self-assessed photophobia, and visual function index-14 questionnaire scores in patients with acute primary angle closure and permanent mydriasis after cataract surgery. PURPOSE: To evaluate the efficacy of a modified iris cerclage technique in patients with acute primary angle closure (PAC) and permanent mydriasis after cataract surgery. PATIENTS AND METHODS: 12 eyes of 12 patients with acute PAC and permanent mydriasis at more than 3 months after phacoemulsification combined with intraocular lens (IOL) implantation underwent modified iris cerclage. Best corrected visual acuity (BCVA), intraocular pressure (IOP), pupil diameter, and visual function index-14 (VF-14) questionnaire and self-assessed photophobia scores before surgery and at 1 week, 1 month, and 3 months postoperatively were compared. Further, the postoperative pupil position and morphology and complications were evaluated. RESULTS: BCVA improved from 0.48±0.23 preoperatively to 0.28±0.15, 0.27±0.15, and 0.26±0.14 at 1 week, 1 month, and 3 months postoperatively, respectively (P=0.008). No significant difference was observed between the preoperative and postoperative IOP (P=0.974). Pupil diameter improved from 6.34±0.51 mm preoperatively to 3.59±0.33, 3.59±0.34, and 3.58±0.32 mm at 1 week, 1 month, and 3 months postoperatively, respectively (P<0.001). Self-assessed photophobia scores improved from 3.33±0.78 preoperatively to 0.83±0.72, 0.51±0.15, and 0.45±0.14 at 1 week, 1 month, and 3 months postoperatively, respectively (P<0.001). VF-14 scores improved from 47.6±6.1 points preoperatively to 67.9±6.2, 72.1±6.1, and 73.5±6.0 points at 1 week, 1 month, and 3 months postoperatively, respectively (P<0.001). Postoperatively, all pupils were centered and round. No postoperative complications, such as iris-suture slippage, iridodialysis, or exposure of the IOL's optical zone edge, were observed. CONCLUSION: Modified iris cerclage creates a centered, precisely sized, round pupil. It improves visual quality in patients with acute PAC and permanent mydriasis after cataract surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA