Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6687, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335215

RESUMO

Optical cryptography manifests itself a powerful platform for information security, which involves encrypting secret images into visual patterns. Recently, encryption schemes demonstrated on metasurface platform have revolutionized optical cryptography, as the versatile design concept allows for unrestrained creativity. Despite rapid progresses, most efforts focus on the functionalities of cryptography rather than addressing performance issues, such as deep security, information capacity, and reconstruction quality. Here, we develop an optical encryption scheme by integrating visual cryptography with metasurface-assisted pattern masking, referred to as Stokes meta-hologram. Based on spatially structured polarization pattern masking, Stokes meta-hologram allows multichannel vectorial encryption to mask multiple secret images into unrecognizable visual patterns, and retrieve them following Stokes vector analysis. Further, an asymmetric encryption scheme based on Stokes vector rotation transformation is proposed to settle the inherent problem of the need to share the key in symmetric encryption. Our results show that Stokes meta-hologram can achieve optical cryptography with effectively improved security, and thereby paves a promising pathway toward optical and quantum security, optical communications, and anticounterfeiting.

2.
Nanomaterials (Basel) ; 12(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234611

RESUMO

The phenomenon of optical superoscillation provides an unprecedented way to solve the problem of optical far-field label-free super-resolution imaging. Numerous optical devices that enable superoscillatory focusing were developed based on scalar and vector diffraction theories in the past several years. However, these reported devices are designed according to the half-wave zone method in spatial coordinates. In this paper, we propose a dielectric metalens for superoscillatory focusing based on the diffraction of angular Bessel functional phase modulated vector field, under the inspiration of the tightly autofocusing property of a radially polarized high-order Bessel beam. Based on this kind of metalens with a numerical aperture (NA) of 0.9, the linearly polarized light is converted into a radially polarized one and then focus into a superoscillating focal spot with the size of 0.32λ/NA. This angular spectrum modulation theory involved in this paper provides a different way of designing superoscillatory devices.

3.
Nat Commun ; 13(1): 2705, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577793

RESUMO

Optical knots and links have attracted great attention because of their exotic topological characteristics. Recent investigations have shown that the information encoding based on optical knots could possess robust features against external perturbations. However, as a superior coding scheme, it is also necessary to achieve a high capacity, which is hard to be fulfilled by existing knot-carriers owing to the limit number of associated topological invariants. Thus, how to realize the knot-based information coding with a high capacity is a key problem to be solved. Here, we create a type of nested vortex knot, and show that it can be used to fulfill the robust information coding with a high capacity assisted by a large number of intrinsic topological invariants. In experiments, we design and fabricate metasurface holograms to generate light fields sustaining different kinds of nested vortex links. Furthermore, we verify the feasibility of the high-capacity coding scheme based on those topological optical knots. Our work opens another way to realize the robust and high-capacity optical coding, which may have useful impacts on the field of information transfer and storage.

4.
Opt Lett ; 47(9): 2290-2293, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486782

RESUMO

Metasurfaces enable the multidimensional manipulation of light fields in a subwavelength scale. However, the low-cost preparation of large-area metasurfaces is still a challenge. In this Letter, we first, to the best of our knowledge, use the laser plasmonic nano-printing technique to efficiently manufacture metasurfaces with multidimensional manipulation capability. By utilizing a phase-polarization mapping method, we fabricated a silicon-based metasurface for color display, and indium tin oxide-based metasurfaces for decoupled near- and far-field holographic displays. This flexible and efficient laser plasmonic nano-printing method has great potential in the preparation of large-area metasurfaces, and is of great significance to promote the practical application of metasurfaces.

5.
Opt Lett ; 47(2): 313-316, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030595

RESUMO

We propose a Poincaré sphere (PS) analogue for optical vortex knots. The states on the PS analogue represent the light fields containing knotted vortex lines in three-dimensional space. The state changes on the latitude and longitude lines lead to the spatial rotation and scale change of the optical vortex knots, respectively. Furthermore, we experimentally generate and observe these PS analogue states. These results provide new insights for the evolution and control of singular beams, and can be further extended to polarization topology.

6.
Opt Lett ; 47(2): 353-356, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030604

RESUMO

Achieving arbitrary manipulation of the fundamental properties of a light wave with a metasurface is highly desirable and has been extensively developed in recent years. However, common approaches are typically targeted to manipulate only one dimension of light wave (amplitude, phase, or polarization), which is not quite sufficient for the acquisition of integrated multifunctional devices. Here, we propose a strategy to design single-layer dielectric metasurfaces that can achieve multidimensional modulation of a light wave. The critical point of this strategy is spin-decoupled complex amplitude modulation, which is realized by combining propagation and geometric phases with polarization-dependent interference. As proofs of concept, perfect vector vortex beams and polarization-switchable stereoscopic holographic scenes are experimentally demonstrated to exhibit the capability of multidimensional light wave manipulation, which unlocks a flexible approach for the multidimensional manipulation of a light wave such as complex light-wave control and vectorial holography in integrated optics and polarization-oriented applications.

7.
Adv Mater ; 34(3): e2103192, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34363242

RESUMO

Metasurfaces provide a compact and powerful platform for manipulating the fundamental properties of light, and have shown unprecedented capabilities in both optical holographic display and information encryption. For increasing information display/storage capacity, metasurfaces with more polarization manipulation channel and full-color holographic functionality are now an urgent requirement. Here, a minimalist dielectric metasurface with the capability of full-color holography encoded with arbitrary polarization is proposed and experimentally demonstrated. Without the daunting exploratory and computational problem in nanostructure searching, full-color holographic images can be multiplexed into arbitrary polarization channels through vectorial ptychography and k-space ptychography based on tetratomic macropixel geometric phase metasurfaces. Thanks to the full degree of freedom tuning in polarization and color spaces, the application scenarios such as holographic 3D imaging and information encryption are realized. The strategy exhibits promising potential in applications of 3Dl display, augmented/virtual reality, high-density data storage, and encryption.

8.
Opt Express ; 29(23): 38849-38857, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808928

RESUMO

Knots and links, as three-dimensional topologies, have played a fundamental role in many physical fields. Despite knotted vortex loops having been shown to exist in the light field, the three-dimensional configuration of vortex loop is fixed due to their topological robustness, making the fields with different topologies independent of each other. In this work, we established the mapping between the torus knots/links and the integer topological charge of the optical vortex, and demonstrated the change of the intermediate state with fractional charges. Furthermore, we experimentally observed the transformation process of the three-dimensional topological structure by only changing the topological charge. Remarkably, we revealed two different reconnection mechanisms associated with the odd or even index of the torus topology. We hope these results may provide new insight for the study of singular optics and evolution in other physical fields.

9.
Opt Express ; 29(19): 29766-29779, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614715

RESUMO

We demonstrate a prominent spatial frequency shift (SFS) for the femtosecond laser-induced periodic structures by only changing the polarization ellipticity of the working laser. The nanostructures are fabricated on the surfaces of silicon (Si) and zinc selenide (ZnSe) using elliptically polarized femtosecond laser pulses, with the pulse duration of 35 fs, the central wavelength of 800nm, and the repetition rate of 1kHz. The experimental results show that the red- and blue-shift trends of the SFS are individually represented on silicon and zinc selenide with the increased polarization ellipticity, where low- and high-spatial-frequency nano-ripples are fabricated, respectively. These unique phenomena are explained by using the laser-surface plasmon polariton interference mechanism and the effective medium theory. The proposed nanostructures with regulatable period are further used for creating nano-gratings on silicon which perform chirped characteristics.

10.
Opt Express ; 29(16): 25720-25730, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614895

RESUMO

In this paper, a strategy to achieve a simultaneous wavefront shaping and polarization rotation, without compromising the number of pixels and energy efficiency as well as having broadband operation range, is proposed. This strategy is based on the application of a spin-decoupled phase metasurface composed by only one set of metal-insulator-metal (MIM) umbrella-shaped chiral unit cells. Quasi-non-dispersive and spin-decoupled phase shift can be achieved simply by changing single structural parameter of the structure. By further merging the Pancharatnam-Berry (PB) geometric phase, conversion of an incident LP light beam into right- and left-handed circularly polarized reflected beams with similar amplitudes, desired phase profiles and controlled phase retardation on a nanoscale is enabled with high efficiency. Based on the proposed strategy, a polarization-insensitive hologram generator with control optical activity, and a multiple ring vortex beam generator are realized. The results obtained in this work provide a simple and pixel-saving approach to the design of integratable and multitasking devices combining polarization manipulation and wavefront shaping functions, such as vectorial holographic generators, multifocal metalenses, and multichannel vector beam generators.

11.
Opt Express ; 27(21): 30009-30019, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684255

RESUMO

Simultaneously controlling the spatial distribution of multiple parameters of a light field in a three-dimensional (3D) space is highly desirable because of its prominent applications in the areas of optical imaging, microscopy, and manipulation. Phase-only encoding techniques that use a phase-only computer-generated hologram (CGH) to reshape and efficiently reconstruct target fields have fostered substantial interests. In this paper, we propose a convenient encoding method to construct vector fields with spatially structured multiple parameters in a 3D space by integrating the Fourier phase-only encoding technique into a modified Sagnac polarization conversion system. Without spatial filtering, various vector fields are constructed instantly at the image plane. Furthermore, utilizing a macro-pixel encoding approach, we demonstrate the possibility of a simultaneous and an independent construction of multiple vector fields in a 3D space. This method can also benefit the design of a metasurface to implement a polarization hologram.

12.
Opt Lett ; 44(15): 3849-3852, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368984

RESUMO

Optical vortices can evolve in light fields, of which the singularity evolution forms dark lines with complex topological structures, knotted or linked. We propose a method to more accurately and rapidly measure the topology of optical vortex fields. To accurately locate the phase singular points, phase measurement based on digital holography and, further, a numerical search algorithm, are utilized. A motor-driven right-angle prism enables the implementation of a single exposure of hologram for each measurement along the propagation direction, greatly improving the measurement speed. The three-dimensional (3D) spatial distributions of several typical vortex links and knots are experimentally reconstructed. The proposed method is expected to rapidly observe the 3D evolution of other complicated, or even vector, fields.

13.
Sci Rep ; 8(1): 9831, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959390

RESUMO

Recently, based on space-variant Pancharatnam-Berry (PB) phases, various flat devices allowing abrupt changes of beam parameters have been predicted and demonstrated to implement intriguing manipulation on spin states in three dimensions, including the efficient generation of vector beams, spin Hall effect of light and light-guiding confinement, and so on. Here, we report on the construction of independently controllable multiple focal spots with different inhomogeneous polarization states by utilizing segmented PB phases. Combining the phase shift approach with PB phases, we engineer fan-shaped segmented PB phases and encode them onto two spin components that compose a hybrid polarized vector beam in a modified common-path interferometer system. Experimental results demonstrate that the fan-shaped segmented PB phase enables the flexible manipulation of focal number, array structure and polarization state of each focal spot. Furthermore, we demonstrate that this fan-shaped approach enables to flexibly tailor the polarization state and the spin angular momentum distribution of a tightly focused field, which have potential applications in optical manipulation, tailored optical response and imaging etc.

14.
Opt Express ; 25(21): 25725-25733, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041237

RESUMO

We propose a common criterion for the effect of Gouy phase on the distinct polarization transition of focused vector vortex beams (VVBs). Such polarization transition is strongly dependent on the parity of the smaller modulus between VVB's polarization order and topological charge. Significantly, the cross polarization transitions are observed at areas where the two spin components with equi-intensity are exactly overlapping and the Gouy phase difference (GPD) between them equals to (2k + 1)π, k is an integer. As a whole, the focal field shows radially variant polarization distributions resulting from the unequal intensity proportion of the two spin components. This polarization transition holds potential in modifying the patterns of periodic surface structure induced by femtosecond vector beams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA