Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 154: 213640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804684

RESUMO

Diabetic complications with high-glucose status (HGS) cause the dysregulated autophagy and excessive apoptosis of multiple-type cells, leading to the difficulty in wound self-healing. Herein, we firstly developed fiber-reinforced gelatin (GEL)/ß-cyclodextrin (ß-CD) therapeutic hydrogels by the modification of platelet-rich plasma exosomes (PRP-EXOs). The GEL fibers that were uniformly dispersed within the GEL/ß-CD hydrogels remarkably enhanced the compression strengths and viscoelasticity. The PRP-EXOs were encapsulated in the hydrogels via the covalent crosslinking between the PRP-EXOs and genipin. The diabetic rat models demonstrated that the GEL/ß-CD hydrogels and PRP-EXOs cooperatively promoted diabetic wound healing. On the one hand, the GEL/ß-CD hydrogels provided the biocompatible microenvironments and active components for cell adhesion, proliferation and skin tissue regeneration. On the other hand, the PRP-EXOs in the therapeutic hydrogels significantly activated the autophagy and inhibited the apoptosis of human umbilical vein endothelial cells (HUVECs) and human skin fibroblasts (HSFs). The activation of autophagy and inhibition of apoptosis in HUVECs and HSFs induced the blood vessel creation, collagen formation and re-epithelialization. Taken together, this work proved that the incorporation of PRP-EXOs in a wound dressing was an effective strategy to regulate autophagy and apoptosis, and provide a novel therapeutic platform for diabetic wound healing.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Exossomos , Plasma Rico em Plaquetas , Ratos , Humanos , Animais , Hidrogéis/farmacologia , Gelatina/farmacologia , Exossomos/metabolismo , Cicatrização , Complicações do Diabetes/metabolismo , Células Endoteliais da Veia Umbilical Humana , Plasma Rico em Plaquetas/metabolismo , Diabetes Mellitus/metabolismo
2.
J Nanobiotechnology ; 21(1): 259, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550715

RESUMO

Autogenous bone grafting has long been considered the gold standard for treating critical bone defects. However, its use is plagued by numerous drawbacks, such as limited supply, donor site morbidity, and restricted use for giant-sized defects. For this reason, there is an increasing need for effective bone substitutes to treat these defects. Mollusk nacre is a natural structure with outstanding mechanical property due to its notable "brick-and-mortar" architecture. Inspired by the nacre architecture, our team designed and fabricated a nacre-mimetic cerium-doped layered nano-hydroxyapatite/chitosan layered composite scaffold (CeHA/CS). Hydroxyapatite can provide a certain strength to the material like a brick. And as a polymer material, chitosan can slow down the force when the material is impacted, like an adhesive. As seen in natural nacre, the combination of these inorganic and organic components results in remarkable tensile strength and fracture toughness. Cerium ions have been demonstrated exceptional anti-osteoclastogenesis capabilities. Our scaffold featured a distinct layered HA/CS composite structure with intervals ranging from 50 to 200 µm, which provided a conducive environment for human bone marrow mesenchymal stem cell (hBMSC) adhesion and proliferation, allowing for in situ growth of newly formed bone tissue. In vitro, Western-blot and qPCR analyses showed that the CeHA/CS layered composite scaffolds significantly promoted the osteogenic process by upregulating the expressions of osteogenic-related genes such as RUNX2, OCN, and COL1, while inhibiting osteoclast differentiation, as indicated by reduced TRAP-positive osteoclasts and decreased bone resorption. In vivo, calvarial defects in rats demonstrated that the layered CeHA/CS scaffolds significantly accelerated bone regeneration at the defect site, and immunofluorescence indicated a lowered RANKL/OPG ratio. Overall, our results demonstrate that CeHA/CS scaffolds offer a promising platform for bone regeneration in critical defect management, as they promote osteogenesis and inhibit osteoclast activation.


Assuntos
Quitosana , Nácar , Ratos , Humanos , Animais , Quitosana/farmacologia , Quitosana/química , Durapatita/farmacologia , Durapatita/química , Alicerces Teciduais/química , Nácar/farmacologia , Regeneração Óssea , Osteogênese , Transdução de Sinais , Diferenciação Celular , Engenharia Tecidual/métodos
3.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375271

RESUMO

Four compounds (1, 5, 7, and 8) were first isolated from the genus Belamcanda Adans. nom. conserv., and six known compounds (2-4, 6, 9, and 10) were isolated from the rhizome of Belamcanda chinensis (L.) DC. Their structures were confirmed by spectroscopic data. Herein, compounds 1-10 were rhapontigenin, trans-resveratrol, 5,7,4'-trihydroxy-6,3',5'-trimethoxy-isoflavone, irisflorentin, 6-hydroxybiochannin A, iridin S, pinoresinol, 31-norsysloartanol, isoiridogermanal, and iristectorene B, respectively. All compounds were evaluated for their antiproliferative effects against five tumor cell lines (BT549, 4T1, MCF7, MDA-MB-231, and MDA-MB-468). Among them, compound 9 (an iridal-type triterpenoid) showed the highest activity against 4T1 and MDA-MB-468 cells. Further studies displayed that compound 9 inhibited cell metastasis, induced cells cycle arrest in the G1 phase, exhibited significant mitochondrial damage in 4T1 and MDA-MB-468 cells including excess reactive oxygen species, decreased mitochondrial membrane potential, and induced 4T1 and MDA-MB-468 cell apoptosis for the first time. In summary, these findings demonstrate that compound 9 exerts promising potential for triple-negative breast cancer treatment and deserves further evaluation.


Assuntos
Antineoplásicos , Neoplasias da Mama , Gênero Iris , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
4.
Mater Today Bio ; 16: 100439, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36245833

RESUMO

In situ regeneration of large-segment bone defects is a difficult clinical problem. Here, we innovatively developed magnetically oriented micro-cellulose fibres using nano-hydroxyapatite/chitosan (CEF/Fe3O4/HA/CS) and loaded an NFκB pathway inhibitor on the surface of magnetically oriented cellulose fibres (CEF/Fe3O4/HA/CS/PQQ) prepared as a layered bioscaffold. CEF/Fe3O4/HA/CS/PQQ was constructed by layering HA/CS sheets. Nano-hydroxyapatite was deposited on the surface of cellulose fibres, then the magnetic nanoparticles on the cellulose fibres were aligned on the surface of chitosan under a magnetic field. Oriented cellulose fibres enhanced the compressive properties of the scaffold, with an average maximum compressive strength of 1.63 â€‹MPa. The CEF/Fe3O4/HA/CS/PQQ layered scaffold was filled into the body, and the acute inflammatory response (IL-1ß and TNF-α) was suppressed through the early sustained release of PQQ. The CEF/Fe3O4/HA/CS/PQQ-layered scaffold further inhibited the osteoclasts differentiation. It was further found that the nano-hydroxyapatite on the surface of oriented cellulose fibres promoted the formation and migration of new blood vessels, accelerated the processing of collagen-I fibres to cartilage, and endochondral ossification. Hence, the development of the CEF/Fe3O4/HA/CS/PQQ layered scaffold with oriented fibres guides bone growth direction and pro-osteogenesis activity and provides a novel strategy for the in situ regeneration of large segmental bone defects.

5.
Mater Today Bio ; 16: 100362, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35937572

RESUMO

Osteoporotic bone defects result from an imbalance in bone homeostasis, excessive osteoclast activity, and the weakening of osteogenic mineralization, resulting in impaired bone regeneration. Herein, inspired by the hierarchical structures of mollusk nacre, nacre exhibits outstanding high-strength mechanical properties, which are in part due to its delicate layered structure. SrFe12O19 nanoparticles and nano-layered double hydroxide (LDH) were incorporated into a bioactive chitosan (CS) matrix to form multifunctional layered nano-SrFe12O19-LDH/CS scaffolds. The compressive stress value of the internal ordered layer structure matches the trabecular bone (0.18 â€‹MPa). The as-released Mg2+ ions from the nano-LDH can inhibit bone resorption in osteoclasts by inhibiting the NFκB signaling pathway. At the same time, the as-released Sr2+ ions promote the high expression of osteoblast collagen 1 proteins and accelerate bone mineralization by activating the BMP-2/SMAD signaling pathway. In vivo, the Mg2+ ions released from the SrFe12O19-LDH/CS scaffolds inhibited the release of pro-inflammatory factors (IL-1ß and TNF-α), while the as-released Sr2+ ions promoted osteoblastic proliferation and the mineralization of osteoblasts inside the layered SrFe12O19-LDH/CS scaffolds. Immunofluorescence for OPG, RANKL, and CD31, showed that stable vasculature could be formed inside the layered SrFe12O19-LDH/CS scaffolds. Hence, this study on multifunctional SrFe12O19-LDH/CS scaffolds clarifies the regulatory mechanism of osteoporotic bone regeneration and is expected to provide a theoretical basis for the research, development, and clinical application of this scaffold on osteoporotic bone defects.

6.
J Mater Chem B ; 9(23): 4700-4709, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34076027

RESUMO

Natural polymer hydrogels are widely used as wound dressings, but they do not have enough bioactivity to accelerate angiogenesis and re-epithelialization. Herein, a therapeutic system was firstly constructed in which endothelin-1 (ET-1), as an endogenous vasoconstrictor peptide, was embedded in a photo-crosslinking gelatin methacryloyl (GelMA) hydrogel for full-thickness wound healing. The multifunctional GelMA-ET-1 hydrogels contained the arginine-glycine-aspartate (RGD) motifs of gelatin that provided adhesive sites for cell proliferation and migration. The ET-1 was wrapped within the network of crosslinked GelMA hydrogels via intermolecular hydrogen bonding interactions, effectively avoiding oxidization by atmospheric oxygen and in vivo enzymatic biodegradation. Notably, the ET-1 in the functional hydrogels significantly promoted the proliferation, migration and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs) and fibroblasts. The full-thickness skin defect model of rats further revealed that the GelMA-ET-1 hydrogels significantly accelerated new blood vessel formation, collagen deposition and re-epithelialization. After 14 days, the full-thickness skin defects almost closed and were filled with the newly formed tissue. Hence, the photo-crosslinking GelMA-ET-1 hydrogels functionalized with ET-1 can be employed as a promising therapeutic system for wound healing.


Assuntos
Endotelina-1/farmacologia , Gelatina/química , Hidrogéis/química , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Humanos , Ratos
7.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805809

RESUMO

Crataegi folium have been used as medicinal and food materials worldwide due to its pharmacological activities. Although the leaves of Crataegus songorica (CS), Crataegus altaica (CA) and Crataegus kansuensis (CK) have rich resources in Xinjiang, China, they can not provide insights into edible and medicinal aspects. Few reports are available on the qualitative and quantitative analysis of flavonoids compounds of their leaves. Therefore, it is necessary to develop efficient methods to determine qualitative and quantitative flavonoids compounds in leaves of CS, CA and CK. In the study, 28 unique compounds were identified in CS versus CK by qualitative analysis. The validated quantitative method was employed to determine the content of eight flavonoids of the leaves of CS, CA and CK within 6 min. The total content of eight flavonoids was 7.8-15.1 mg/g, 0.1-9.1 mg/g and 4.8-10.7 mg/g in the leaves of CS, CA and CK respectively. Besides, the best harvesting periods of the three species were from 17th to 26th September for CS, from 30th September to 15th October for CA and CK. The validated and time-saving method was successfully implemented for the analysis of the content of eight flavonoids compounds in CS, CA and CK for the first time.


Assuntos
Crataegus/química , Flavonoides/análise , China , Cromatografia Líquida de Alta Pressão , Crataegus/classificação , Crataegus/crescimento & desenvolvimento , Flavonoides/química , Estrutura Molecular , Folhas de Planta/química , Plantas Comestíveis/química , Plantas Medicinais/química , Estações do Ano , Espectrometria de Massas em Tandem
9.
J Nanobiotechnology ; 19(1): 11, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413447

RESUMO

BACKGROUND: Breast cancer bone metastasis has become one of the most common complications; however, it may cause cancer recurrence and bone nonunion, as well as local bone defects. METHODS: Herein, In vitro, we verified the effect of bioscaffold materials on cell proliferation and apoptosis through a CCK8 trial, staining of live/dead cells, and flow cytometry. We used immunofluorescence technology and flow cytometry to verify whether bioscaffold materials regulate macrophage polarization, and we used ALP staining, alizarin red staining and PCR to verify whether bioscaffold material promotes bone regeneration. In vivo, we once again studied the effect of bioscaffold materials on tumors by measuring tumor volume in mice, Tunel staining, and caspase-3 immunofluorescence. We also constructed a mouse skull ultimate defect model to verify the effect on bone regeneration. RESULTS: Graphene oxide (GO) nanoparticles, hydrated CePO4 nanorods and bioactive chitosan (CS) are combined to form a bioactive multifunctional CePO4/CS/GO scaffold, with characteristics such as photothermal therapy to kill tumors, macrophage polarization to promote blood vessel formation, and induction of bone formation. CePO4/CS/GO scaffold activates the caspase-3 proteasein local tumor cells, thereby lysing the DNA between nucleosomes and causing apoptosis. On the one hand, the as-released Ce3+ ions promote M2 polarization of macrophages, which secretes vascular endothelial growth factor (VEGF) and Arginase-1 (Arg-1), which promotes angiogenesis. On the other hand, the as-released Ce3+ ions also activated the BMP-2/Smad signaling pathway which facilitated bone tissue regeneration. CONCLUSION: The multifunctional CePO4/CS/GO scaffolds may become a promising platform for therapy of breast cancer bone metastases.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cério/química , Grafite/farmacologia , Nanotubos/química , Fosfatos/química , Células 3T3 , Animais , Materiais Biocompatíveis , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Regeneração Óssea , Osso e Ossos , Neoplasias da Mama/metabolismo , Proliferação de Células , Quitosana , Modelos Animais de Doenças , Feminino , Macrófagos , Camundongos , Metástase Neoplásica , Osteogênese , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular
10.
J Colloid Interface Sci ; 586: 563-575, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33190833

RESUMO

Organic pollutants in electroplating wastewater can be removed by photodegradation, however the effect mechanism of heavy metal ions on photocatalytic activity still remains unknown. Herein, we firstly reported the self-assembly synthesis of titanium dioxide/reduced graphene oxide (TiO2/rGO) composites for phenol-4-sulfonic acid (PSA) removal, and investigated the effects of Cu2+ ions on photocatalytic efficiency. During the self-assemble process, rGO nanosheets were connected together to form network macropores, and simultaneously induced the deposition of hierarchically nanostructured TiO2 microspheres. The synergetic effects of TiO2 microspheres and rGO nanosheets improved the photocatalytic activity by enhancing light adsorption ability, stabilizing electron-hole separation and decreasing band gap energy. The Cu2+ ions in wastewater showed positive and negative effects on PSA photodegradation. In the photocatalytic reaction, the electron-induced reduction reaction of Cu(II) into Cu(0) or Cu(I) took place, which inhibited electron-hole recombination and thus enhanced photocatalytic activity. However, the high chemical stability of PSA-Cu(II) complex compounds held back PSA photodegradation. The appropriate concentrations of Cu2+ ions at around 25 mg/L accelerated PSA photodegradation over TiO2/rGO composites. The PSA degradation into CO2 and H2O was performed by using hydroquinone, benzoquinone and maleic acid as degradation intermediates. Hence, TiO2/rGO composites are novel multifunctional photocatalysts to purify electroplating wastewater.

11.
Eur J Histochem ; 64(3)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32643899

RESUMO

To investigate the effects of carboplatin (CBP) injection on apoptosis induction in the human lymphoma cell line Raji and to explore the underlying mechanism, Raji cells were randomly divided into two treatment groups. Cells in the experimental groups were treated with 15 µM CBP injection, those in the control groups were treated with solvent, and both groups were treated for 24, 48 and 72 h. Cells from each group were collected for subsequent assays. For each group, the relative expression of B-cell lymphoma-2 (Bcl-2) was determined by Western blot (WB), the expression pattern of Bcl-2 was observed by immunocytochemistry (ICC), and cell apoptosis was observed after Hoechst 33342 staining. Real-time PCR detection of the relative expression levels of the Bax and caspase-3 genes in each group of cells were performed. The WB results showed that the relative expression of the Bcl-2 protein significantly decreased 48 and 72 h after treatment in the CBP groups compared with the control groups (P<0.001), and a significant decrease in the expression of this protein was also noted at 48 h vs 24 h, 72 h vs 48 h, and 72 h vs 24 h with extremely significant differences (P<0.001). Moreover, the expression of the Bcl-2 protein decreased as the duration of CBP treatment increased, showing a time-dependent manner. The ICC results were consistent with the WB findings. The expression of the Bcl-2 protein in the CBP treatment group was significantly reduced 48 h and 72 h after treatment compared with the control group (P<0.001). A time-dependent manner was also noted in the expression of this protein, i.e., the expression level decreased gradually at 24, 48, and 72 h after treatment with statistically significant differences (P<0.001). Hoechst 33342 staining showed that the apoptosis rates at the three time points in the treatment groups were significantly higher than those in the control groups (P<0.001), and a time-effect relationship was observed. The apoptosis rate increased over time with a significant difference (P<0.05). The PCR results showed that the Bax and caspase-3 gene expression trend was the same but opposite that of Bcl-2. After treatment for 24 h and 48 h, the gene expression of the medication groups decreased with a very significant difference (P<0.001), and with prolonged action time, the relative expression of the genes in the medication groups showed an upward trend. Comparing 48 h with 72 h and 24 h with 72 h, the gene expression levels also increased, reaching a very significant difference (P<0.001), and there was a certain time dependence. CBP injection significantly reduced the expression of the Bcl-2 protein and induced apoptosis of Raji cells in a time-dependent manner. Moreover, CBP injection can increase the expression levels of the Bax and caspase-3 genes.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carboplatina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Proteína X Associada a bcl-2/metabolismo
12.
J Hazard Mater ; 386: 121999, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31901547

RESUMO

Design and fabrication of novel adsorbents to remove heavy metal ions in continuous-flow wastewater remained a great challenge. Inspired by the hierarchical architecture and biomineralization process of nacre, we firstly constructed hydroxyapatite/chitosan (HA/CH) layered composites. The brick-and-mortar characteristics of HA/CH layered composites improved their flexure strengths up to 3.08 MPa so that the hierarchical architectures could not be destroyed even under high-pressure drop. HA/CH layered composites had the hierarchical microstructures analogous to plate towers, facilitating the separation of adsorbents from water. The interlaminar macropores in the layered composites contributed to the transfer of continuous-flow wastewater. The Pb(II), Cd(II) and Hg(II) ions in wastewater showed similar adsorption trends, and their adsorption amounts arrived at 295.96, 192.37 and 127.38 mg g-1 after 6 days, respectively. Among the above heavy metal ions, the HA/CH layered composites possessed the best Pb(II) adsorption ability due to forming lead hydroxyapatite rods and CH-Pb complexes. The Pb(II) adsorption performances of HA/CH layered composites matched well with Elovich equation, pseudo-first-order and pseudo-second-order kinetics models, revealing the heterogeneous chemisorption mechanism at adsorbent/wastewater interfaces. Therefore, the nacre-like HA/CH layered composites with appropriate mechanical property and excellent adsorption capacity are a novel platform for heavy metal removal in continuous-flow wastewater.

13.
Int J Syst Evol Microbiol ; 70(2): 827-834, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31675289

RESUMO

A Gram-stain-negative, rod-shaped, non-motile, poly-ß-hydroxybutyrate-accumulating and aerobic bacterial strain, designated CHR27T, was isolated and characterized by using the polyphasic taxonomy approach. The results of phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of an up-to-date bacterial core gene set (92 protein clusters) indicated that strain CHR27T is affiliated with species in the genus Sphingobium. 16S rRNA gene sequence similarity results indicated that strain CHR27T was closely related to species of the genus Sphingobium (94.3-97.0 %), and had the highest sequence similarity to Sphingobium qiguonii X23T (97.0 %). Strain CHR27T showed 19.4-22.1 % digital DNA-DNA hybridization values and 73.2-74.8 % average nucleotide identity values with the strains of other Sphingobium species. Optimal growth occurred at 25 °C, pH 7.5 and in the absence of NaCl. The major fatty acids of strain CHR27T were C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The predominant hydroxy fatty acid was C14 : 0 2-OH. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, two unidentified sphingoglycolipids and an unidentified aminophospholipid. Strain CHR27T contained spermidine as the major polyamine and putrescine as a minor component. The only isoprenoid quinone was ubiquinone-10. The genomic DNA G+C content of strain CHR27Twas 61.8 mol%. On the basis of the phylogenetic inference and phenotypic data, strain CHR27T was considered a representative of a novel species within the genus Sphingobium. The name Sphingobium fluviale sp. nov. is proposed, with strain CHR27T (=BCRC 81121T=LMG 30596T=KCTC 62510T) as the type strain.


Assuntos
Filogenia , Rios/microbiologia , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hidroxibutiratos/metabolismo , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Poliésteres/metabolismo , Putrescina/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Sphingomonadaceae/isolamento & purificação , Taiwan , Ubiquinona/química
14.
Int J Syst Evol Microbiol ; 70(1): 309-316, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31596696

RESUMO

Strain TLA-22T, isolated from a cold spring in Taiwan, was characterized using a polyphasic taxonomy approach. Cells were Gram-stain-negative, aerobic, poly-ß-hydroxybutyrate-accumulating, motile by means of a single polar flagellum, rod-shaped and formed bright yellow colonies. Optimal growth occurred at 20-25 °C, pH 6-6.5, and in the presence of 0.5 % NaCl. The major fatty acids of TLA-22T were C18 : 1 ω7 c and C17 : 1ω6c. The predominant hydroxy fatty acids were C15 : 0 2-OH and C14 : 0 2-OH. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine, sphingoglycolipid, an unidentified aminophospholipid, an unidentified phospholipid and three unidentified lipids. TLA-22T contained spermidine as the major polyamine and putrescine as the minor component. The only isoprenoid quinone was Q-10. The genomic DNA G+C content of TLA-22T was 63.2 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that TLA-22T was a mem,ber of a phylogenetic lineage including members of the genus Sphingobium. TLA-22T was most closely related to Sphingobium aromaticiconvertens RW16T, with a 97.4 % 16S rRNA gene sequence similarity. TLA-22T showed 74.8-75.7 % average nucleotide identity and 20.1-22.0 % digital DNA-DNA hybridization identity with the strains of other species of the genus Sphingobium. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain TLA-22T should be classified as representing a novel species of the genus Sphingobium, for which the name Sphingobium algorifonticola sp. nov. is proposed. The type strain is TLA-22T (=BCRC 81097T =LMG 30309T=KCTC 62189T).


Assuntos
Nascentes Naturais/microbiologia , Filogenia , Sphingomonadaceae/classificação , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hidroxibutiratos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , Poliésteres , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Sphingomonadaceae/isolamento & purificação , Taiwan , Ubiquinona/análogos & derivados , Ubiquinona/análise
15.
Mater Sci Eng C Mater Biol Appl ; 104: 109999, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499945

RESUMO

Chitosan (CTS) and mesoporous calcium silicate (MCS) have been developed for bone defect healing; however, their bone regeneration capacity still does not satisfy the patients with bone diseases. Gadolinium (Gd) is accumulated in human bones, and plays a beneficial role in regulating cell performance and bone regeneration. We firstly constructed Gd-doped MCS/CTS (Gd-MCS/CTS) scaffolds by a lyophilization technology. The interconnected arrangement of CTS films lead to forming macropores by using ice crystals as templates during the lyophilization procedure, and the Gd-MCS nanoparticles dispersed uniformly on the macropore walls. The biocompatible chemical components and hierarchical pores facilitated the attachment and spreading of rat bone marrow-derived mesenchymal stem cells (rBMSCs). Interestingly, the Gd dopants in the scaffolds effectively activated the Wnt/ß-catenin signaling pathway, resulting in excellent cell proliferation and osteogenic differentiation capacities. The osteogenic-related genes such as alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and collagen type1 (COL-1) were remarkably up-regulated by Gd-MCS scaffolds as compared with MCS scaffolds, and their expression levels increased in a positive correlation with Gd doping amounts. Moreover, in vivo rat cranial defect tests further confirmed that Gd-MCS/CTS scaffolds significantly stimulated collagen deposition and new bone formation. The exciting finding suggested the beneficial effects of Gd3+ ions on osteogenic differentiation and new bone regeneration, and Gd-MCS/CTS scaffolds can be employed as a novel platform for bone defect healing.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Quitosana/química , Gadolínio/química , Gadolínio/farmacologia , Silicatos/química , Silicatos/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Regulação para Cima/efeitos dos fármacos
16.
Int J Syst Evol Microbiol ; 69(8): 2372-2379, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31157614

RESUMO

Strain WWJ-16T was isolated from a freshwater reservoir in Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set (92 protein clusters) indicated that strain WWJ-16T is affiliated with the species in the genus Flavobacterium. Strain WWJ-16T was most closely related to Flavobacterium fontis MIC3010T (97.9 % 16S rRNA gene sequence identity) and Flavobacterium squillarum CMJ-5T (97.6 %). Strain WWJ-16T showed 77.4 % average nucleotide identity and 20.6 % digital DNA-DNA hybridization identity with F. fontis MIC3010T. Cells of strain WWJ-16T were Gram-stain-negative, strictly aerobic, non-motile, rod-shaped and formed yellow colonies. Optimal growth occurred at 25 °C, pH 7 and in 0.5-1 % NaCl (w/v). Strain WWJ-16T contained iso-C15 : 1 G and iso-C15 : 0 as predominant fatty acids. The major hydroxyl fatty acids were iso-C15 : 0 3-OH, iso-C17 : 0 3-OH and iso-C16 : 0 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, four uncharacterized aminophospholipids and four uncharacterized phospholipids. The major polyamine was homospermidine. The major isoprenoid quinone was MK-6. The genomic DNA G+C content of strain WWJ-16T was 39.4 mol%, as determined by genome sequencing. The genotypic and phenotypic characteristics indicate that strain WWJ-16T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium stagni sp. nov. is proposed. The type strain is WWJ-16T (=BCRC 81125T =LMG 30600T=KCTC 62515T).


Assuntos
Flavobacterium/classificação , Água Doce/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacterium/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , Poliaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Arch Microbiol ; 201(8): 1119-1127, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31165177

RESUMO

Strain KYPW7T, isolated from the Funglin Stream in Taiwan, was characterized using a polyphasic taxonomy approach. Cells of strain KYPW7T were Gram-stain-negative, aerobic, non-spore forming, non-motile rods and formed white colonies. Growth occurred at 15-30 °C (optimum 25 °C), at pH 6-8 (optimum pH 6.5) and with 0-1% NaCl (optimum 0%). Phylogenetic analyses based on 16S rRNA and coding sequences of 92 protein clusters showed that strain KYPW7T represents a novel genus in the family Flavobacteriaceae. The 16S rRNA gene sequence of strain KYPW7T was related to the species of the genera Chryseobacterium (91.8-96.0% sequence similarity), Bergeyella (95.1-95.8%), Cloacibacterium (94.5-95.7%), Daejeonia (95.6%) and Riemerella (94.0-95.0%). Strain KYPW7T showed less than 72% average nucleotide identity and less than 24% digital DNA-DNA hybridization identity compared to the type strains of related genera within the family Flavobacteriaceae. The predominant fatty acids were iso-C15:0 and iso-C17:0 3-OH. The major isoprenoid quinone was MK-6 and the DNA G + C content was 36.8 mol%. The polar lipids had phosphatidylethanolamine, three uncharacterized aminophospholipids and an uncharacterized phospholipid. The polyamines contained homospermidine, putrescine and spermidine. On the basis of the genotypic and phenotypic data, strain KYPW7T represents a novel species of a new genus in the family Flavobacteriaceae, for which the name Amniculibacterium aquaticum gen. nov., sp. nov. is proposed. The type strain is KYPW7T (= BCRC 81123T = LMG 30598T = KCTC 62512T).


Assuntos
Flavobacteriaceae , Rios/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Flavobacteriaceae/classificação , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/análise , Fosfolipídeos/análise , Filogenia , Poliaminas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan
18.
Int J Syst Evol Microbiol ; 69(8): 2283-2291, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31120829

RESUMO

Strain LLJ-11T, isolated from water sampled from a freshwater stream in Taiwan, was characterized using a polyphasic taxonomy approach. Cells of strain LLJ-11T were Gram-stain-negative, strictly aerobic, motile by gliding, rod-shaped and formed translucent yellow colonies. Optimal growth occurred at 25 °C, pH 7 and 0 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain LLJ-11T is affiliated with species in the genus Flavobacterium. Strain LLJ-11T was most closely related to Flavobacterium amniphilum KYPY10T with 98.0 % 16S rRNA gene sequence identity. The DNA-DNA relatedness of strain LLJ-11T with respect to Flavobacterium species was less than 35 %. Average nucleotide identity and digital DNA-DNA hybridization values between strain LLJ-11T and the type strains of other closely related Flavobacterium species were 70.0-76.3 % and 21.1-23.9 %, respectively. Strain LLJ-11T contained iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and summed feature 9 (iso-C17 : 1ω9c and/or 10-methyl C16 : 0) as the predominant fatty acids. The major isoprenoid quinone was MK-6. The polar lipid profile consisted of phosphatidylethanolamine, three uncharacterized aminophospholipids and two uncharacterized phospholipids. The major polyamine was homospermidine. The DNA G+C content was 34.8 mol%. On the basis of the phylogenetic inference and phenotypic data, strain LLJ-11T is considered a representative of a novel species within the genus Flavobacterium. The name Flavobacterium amnicola sp. nov. is proposed, with strain LLJ-11T (=BCRC 81124T=LMG 30599T=KCTC 62514T) as the type strain.


Assuntos
Flavobacterium/classificação , Filogenia , Rios/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacterium/isolamento & purificação , Água Doce/microbiologia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Poliaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan , Vitamina K 2/análogos & derivados , Vitamina K 2/química
19.
Int J Syst Evol Microbiol ; 69(6): 1775-1782, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30964429

RESUMO

Strain ICH-30T was isolated from a freshwater fish pond in Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain ICH-30T formed a phylogenetic lineage in the genus Flavobacterium. Strain ICH-30T was most closely related to Flavobacteriumlacus NP180T with 97.0 % 16S rRNA gene sequence similarity. Strain ICH-30T showed 70.0-83.1 % average nucleotide identity and 16.5-23.7 % digital DNA-DNA hybridization identity with the type strains of other closely related Flavobacterium species. Cells of strain ICH-30T were Gram-stain-negative, strictly aerobic, non-motile, rod-shaped and formed dark orange colonies. Optimal growth occurred at 20-30 °C, pH 8-9 and 0-0.5 % NaCl. Strain ICH-30T contained iso-C15 : 1 G and iso-C15 : 0 as the predominant fatty acids. The major hydroxyl fatty acids were iso-C17 : 0 3-OH, iso-C16 : 0 3-OH and iso-C15 : 0 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, six uncharacterized aminophospholipids, one uncharacterized phospholipid and two uncharacterized lipids. The major polyamine was homospermidine. The only isoprenoid quinone was MK-6. The DNA G+C content of the genomic DNA was 34.3 mol%. On the basis of the phylogenetic inference and phenotypic data, strain ICH-30T should be classified as a novel species, for which the name Flavobacterium piscinae sp. nov. is proposed. The type strain is ICH-30T (=BCRC 81122T=LMG 30579T=KCTC 62513T).


Assuntos
Peixes , Flavobacterium/classificação , Filogenia , Lagoas/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacterium/isolamento & purificação , Água Doce/microbiologia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , Poliaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
Int J Nanomedicine ; 14: 1085-1100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804672

RESUMO

BACKGROUND: Biomaterial-induced osteogenesis is mainly related to hierarchically porous structures and bioactive components. Rare earth elements are well known to promote osteogenesis and stimulate bone repair; however, the underlying biological effects of gadolinium (Gd) element on bone regeneration are not yet known. METHODS: In this study, we successfully fabricated gadolinium-doped bioglass (Gd-BG) scaffolds by combining hollow mesoporous Gd-BG microspheres with chitosan and evaluated in vitro effects and underlying mechanisms with Cell Counting Kit-8, scanning electron microscopy, alkaline phosphatase, Alizarin red staining, and polymerase chain reaction. Cranial defect model of rats was constructed to evaluate their in vivo effects. RESULTS: The results indicated that Gd-BG scaffolds could promote the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Mechanistically, the Akt/GSK3ß signaling pathway was activated by the Gd-BG scaffolds. The enhancing effect of Gd-BG scaffolds on the osteogenic differentiation of hBMSCs was inhibited by the addition of LY294002, an inhibitor of Akt. Moreover, the in vivo cranial defect model of rats indicated that the Gd-BG scaffolds could effectively promote bone regeneration. CONCLUSION: Both in vitro and in vivo results suggested that Gd-BG scaffolds have promising applications in bone tissue engineering.


Assuntos
Osso e Ossos/patologia , Diferenciação Celular/efeitos dos fármacos , Cerâmica/farmacologia , Gadolínio/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Crânio/diagnóstico por imagem , Crânio/patologia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA