Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(51): 57206-57214, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516016

RESUMO

Nanozyme technology as an emerging field has been successfully applied to chemical sensing, biomedicine, and environmental monitoring. It is very significant for the advance of this field to construct nanozymes with high catalytic activity by a simple method and to develop their multifunctional applications. Here, a new type of cobalt-doped carbon dots (Co-CDs) nanozymes was designed using vitamin B12 and citric acid as the precursors. The homogeneous cobalt doping at carbon nuclear led the Co-CDs to show significant peroxidase-like activity resembling natural metalloenzymes. Based on the high affinity of Co-CDs to H2O2 (Km = 0.0598 mM), a colorimetric sensor for glucose detection was constructed by combining Co-CDs with glucose oxidase. On account of the high catalytic activity of nanozymes and the cascade strategy, a good linear relationship was obtained from 0.500 to 200 µM, with a detection limit of 0.145 µM. The biosensor has realized the accurate detection of glucose in human serum samples. Moreover, Co-CDs could specifically catalyze H2O2 in cancer cells to generate a variety of reactive oxygen species, leading to the death of cancer cells, which has useful application potential in tumor catalytic therapy. In this work, the catalytic activity of Co-CDs has been adequately exploited, which extends the application of carbon dots in multiple biotechnologies, including biosensing, disease diagnosis, and treatment.


Assuntos
Técnicas Biossensoriais , Carbono , Humanos , Peróxido de Hidrogênio , Peroxidases/metabolismo , Glucose/metabolismo , Técnicas Biossensoriais/métodos , Colorimetria/métodos
2.
J Gastrointest Oncol ; 13(3): 1097-1111, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35837156

RESUMO

Background: With the advancement of early detection and treatment, the incidence of colon cancer (CC) has declined steadily worldwide; however, the mortality remains unacceptably high. Tripartite motif 52 (TRIM52) is a member of the family of highly conserved RBCC (a RING-finger, two B-boxes, and a predicted alpha-helical Coiled-Coil domain were linked to the N-terminal region in sequence) proteins with more than 70 isoforms, which plays an important role in tumorigenesis through different signaling pathways. How it regulates the development of CC remains unknown. Methods: Western blot was used to reveal that TRIM52 protein expression is up-regulated in CC cells. The Analysis of The Cancer Genome Atlas (TCGA) database was used to find the different expressions of TRIM52 between colon cancer tissues and normal colonic epithelial tissues. Cell proliferation assays, migration and invasion assays, and apoptosis were used to verify the changes in cell function after knockdown or overexpression of TRIM52 in CC cells. After that, the key proteins of the nuclear factor (NF)-κB signaling pathway were validated by western blot to explore the role of TRIM52 in the NF-κB signaling pathway. Finally, in order to explore the potential sites of TRIM52, LPS and PDTC were employed to activate and block the NF-κB signaling pathway, and the key proteins of the NF-κB signaling pathway were validated by western blot. Results: TGCA database revealed that TRIM52 expression was elevated in CC tissues and correlated with prognosis. It was verified that TRIM52 promoted the proliferation, migration, and invasion of CC cells, and inhibited cell apoptosis. Most of the tripartite motif proteins (TRIMs) have ubiquitin ligase activity related to their highly conserved RING structure. Detection of the key proteins of the NF-κB signaling pathway in CC cells revealed that TRIM52 activated the NF-κB signaling pathway. Conclusions: We confirmed that TRIM52 promotes proliferation, migration, and invasion while inhibiting apoptosis of CC cells. The regulatory effect of TRIM52 on CC cells is related to the activation of the NF-κB signaling pathway. As TRIM52 acted as an upstream stimulator, stimulating the transfer of P65 into the nucleus to activate the NF-κB signaling pathway, it may provide a potential target for prognosis prediction and treatment of CC.

3.
Materials (Basel) ; 14(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576576

RESUMO

Photocatalytic water splitting for hydrogen production via heterojunction provides a convenient approach to solve the world crises of energy supply. Herein, graphene quantum dots modified TiO2 hybrids (TiO2-GQDs) with a "caterpillar"-like structure exhibit stronger light absorption in the visible region and an enhanced hydrogen production capacity of about 3.5-fold compared to the pristine TiO2 caterpillar. These results inferred that the addition of GQDs drastically promotes the interfacial electron transfer from GQDs to TiO2 through C-O-Ti bonds via the bonding between oxygen vacancy sites in TiO2 and in-plane oxygen functional groups in GQDs. Using a "caterpillar"-like structure are expected to provide a new platform for the development of highly efficient solar-driven water splitting systems based on nanocomposite photocatalyst.

4.
Mol Oncol ; 15(4): 1234-1255, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33512745

RESUMO

Long noncoding RNAs (lncRNAs) can compete with endogenous RNAs to modulate the gene expression and contribute to oncogenesis and tumor metastasis. lncRNA NKX2-1-AS1 (NKX2-1 antisense RNA 1) plays a pivotal role in cancer progression and metastasis; however, the contribution of aberrant expression of NKX2-1-AS1 and the mechanism by which it functions as a competing endogenous RNA (ceRNA) in gastric cancer (GC) remains elusive. NKX2-1-AS1 expression was detected in paired tumor and nontumor tissues of 178 GC patients by quantitative reverse transcription PCR (qRT-PCR). Using loss-of-function and gain-of-function experiments, the biological functions of NKX2-1-AS1 were evaluated both in vitro and in vivo. Further, to assess that NKX2-1-AS1 regulates angiogenic processes, tube formation and co-culture assays were performed. RNA binding protein immunoprecipitation (RIP) assay, a dual-luciferase reporter assay, quantitative PCR, Western blot, and fluorescence in situ hybridization (FISH) assays were performed to determine the potential molecular mechanism underlying this ceRNA. The results indicated that NKX2-1-AS1 expression was upregulated in GC cell lines and tumor tissues. Overexpression of NKX2-1-AS1 was significantly associated with tumor progression and enhanced angiogenesis. Functionally, NKX2-1-AS1 overexpression promoted GC cell proliferation, metastasis, invasion, and angiogenesis, while NKX2-1-AS1 knockdown restored these effects, both in vitro and in vivo. RIP and dual-luciferase assays revealed that the microRNA miR-145-5p is a direct target of NKX2-1-AS1 and that NKX2-1-AS1 serves as a ceRNA to sponge miRNA and regulate angiogenesis in GC. Moreover, serpin family E member 1 (SERPINE1) is an explicit target for miR-145-5p; besides, the NKX2-1-AS1/miR-145-5p axis induces the translation of SERPINE1, thus activating the VEGFR-2 signaling pathway to promote tumor progression and angiogenesis. NKX2-1-AS1 overexpression is associated with enhanced tumor cell proliferation, angiogenesis, and poor prognosis in GC. Collectively, NKX2-1-AS1 functions as a ceRNA to miR-145-5p and promotes tumor progression and angiogenesis by activating the VEGFR-2 signaling pathway via SERPINE1.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Neovascularização Patológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
5.
Plant Physiol ; 184(3): 1389-1406, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943464

RESUMO

Wood formation is a complex process that involves cell differentiation, cell expansion, secondary wall deposition, and programmed cell death. We constructed a four-layer wood formation transcriptional regulatory network (TRN) in Populus trichocarpa (black cottonwood) that has four Secondary wall-associated NAC-Domain1 (PtrSND1) transcription factor (TF) family members as the top-layer regulators. We characterized the function of a MYB (PtrMYB161) TF in this PtrSND1-TRN, using transgenic P trichocarpa cells and whole plants. PtrMYB161 is a third-layer regulator that directly transactivates five wood formation genes. Overexpression of PtrMYB161 in P. trichocarpa (OE-PtrMYB161) led to reduced wood, altered cell type proportions, and inhibited growth. Integrative analysis of wood cell-based chromatin-binding assays with OE-PtrMYB161 transcriptomics revealed a feedback regulation system in the PtrSND1-TRN, where PtrMYB161 represses all four top-layer regulators and one second-layer regulator, PtrMYB021, possibly affecting many downstream TFs in, and likely beyond, the TRN, to generate the observed phenotypic changes. Our data also suggested that the PtrMYB161's repressor function operates through interaction of the base PtrMYB161 target-binding system with gene-silencing cofactors. PtrMYB161 protein does not contain any known negative regulatory domains. CRISPR-based mutants of PtrMYB161 in P. trichocarpa exhibited phenotypes similar to the wild type, suggesting that PtrMYB161's activator functions are redundant among many TFs. Our work demonstrated that PtrMYB161 binds to multiple sets of target genes, a feature that allows it to function as an activator as well as a repressor. The balance of the two functions may be important to the establishment of regulatory homeostasis for normal growth and development.


Assuntos
Crescimento Celular , Proliferação de Células , Populus/crescimento & desenvolvimento , Populus/genética , Populus/metabolismo , Fatores de Transcrição/metabolismo , Madeira/crescimento & desenvolvimento , Xilema/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética
6.
Adv Mater ; 32(14): e1905578, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32101356

RESUMO

The rate-determining process for electrochemical energy storage is largely determined by ion transport occurring in the electrode materials. Apart from decreasing the distance of ion diffusion, the enhancement of ionic mobility is crucial for ion transport. Here, a localized electron enhanced ion transport mechanism to promote ion mobility for ultrafast energy storage is proposed. Theoretical calculations and analysis reveal that highly localized electrons can be induced by intrinsic defects, and the migration barrier of ions can be obviously reduced. Consistently, experiment results reveal that this mechanism leads to an enhancement of Li/Na ion diffusivity by two orders of magnitude. At high mass loading of 10 mg cm-2 and high rate of 10C, a reversible energy storage capacity up to 190 mAh g-1 is achieved, which is ten times greater than achievable by commercial crystals with comparable dimensions.

7.
Materials (Basel) ; 11(2)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29439522

RESUMO

The magnetic, electrical transport and thermal expansion properties of Mn3Zn1-xCoxN (x = 0.2, 0.4, 0.5, 0.7, 0.9) have been systematically investigated. Co-doping in Mn3ZnN complicates the magnetic interactions, leading to a competition between antiferromagnetism and ferromagnetism. Abrupt resistivity jump phenomenon and negative thermal expansion behavior, both associated with the complex magnetic transition, are revealed in all studied cases. Furthermore, semiconductor-like transport behavior is found in sample x = 0.7, distinct from the metallic behavior in other samples. Below 50 K, resistivity minimum is observed in samples x = 0.4, 0.7, and 0.9, mainly caused by e-e scattering mechanism. We finally discussed the strong correlation among unusual electrical transport, negative thermal expansion and magnetic transition in Mn3Zn1-xCoxN, which allows us to conclude that the observed unusual electrical transport properties are attributed to the shift of the Fermi energy surface entailed by the abrupt lattice contraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA