Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 655: 124009, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38493838

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is responsible for cell fusion with SARS-CoV viruses. ACE2 is contained in different areas of the human body, including the nasal cavity, which is considered the main entrance for different types of airborne viruses. We took advantage of the roles of ACE2 and the nasal cavity in SARS-CoV-2 replication and transmission to develop a nasal dry powder. Recombinant ACE2 (rhACE2), after a proper encapsulation achieved via spray freeze drying, shows a binding efficiency with spike proteins of SARS-CoV-2 higher than 77 % at quantities lower than 5 µg/ml. Once delivered to the nose, encapsulated rhACE2 led to viability and permeability of RPMI 2650 cells of at least 90.20 ± 0.67 % and 47.96 ± 4.46 %, respectively, for concentrations lower than 1 mg/ml. These results were validated using nasal dry powder containing rhACE2 to prevent or treat infections derived from SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/farmacologia , COVID-19/prevenção & controle , Preparações Farmacêuticas , Pós
2.
Sci Rep ; 13(1): 17343, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833426

RESUMO

Recent advances in peptide delivery and nanotechnology has resulted in emergence of several non-parenteral administration routes that replace subcutaneous injections associated with patient discomfort. Thiolated biopolymers are relatively new materials being explored to enhance mucoadhesivity and permeability in these efforts, yet their pH dependent reactivity remains an obstacle. This work focussed on improving the mucoadhesivity of thiolated chitosans by activating them with mercaptonicotinic acid, in a bid to create a novel thiomerized chitosan that can open cell tight junctions for application in oral delivery. The synthesized mercaptonicotinic acid activated thiolated chistoan (MNA-TG-chitosan), along with thiolated chitosan (TG-chitosan) and unmodified chitosan were then used to create insulin nanoparticles (insNPs) using spray drying encapsulation process. Use of MNA-TG-chitosan in place of chitosan resulted in reduction of particle size of insNPs from 318 to 277 nm with no significant changes in polydispersity index (~ 0.2), encapsulation efficiency (~ 99%), insulin loading content (~ 25%) and morphology. Results from in-vitro cytotoxicity on TR146, CaCo2 and HepG2 cell lines revealed no significant effects on cell viability at 50-1000 µg/mL concentration. insNPs encapsulated with the new material, MNA-TG-chitosan, resulted in a 1.5-fold and 4.4-fold higher cellular uptake by HepG2 liver cells where insulin is metabolized, approximately 40% and 600% greater insulin transport through TR146 buccal cell monolayers, and 40% and 150% greater apparent permeability than insNPs encapsulated with unmodified chitosan and TG-chitosan respectively. The higher permeation achieved on using MNA-TG chitosan was attributed to the greater opening of the cell tight junction evidenced by reduction of transepithelial electrical resistance of TR146 buccal cell monolayers. This study demonstrates MNA-TG-chitosan as a promising material for improved peptide oral delivery.


Assuntos
Quitosana , Humanos , Quitosana/química , Junções Íntimas , Células CACO-2 , Insulina , Administração Oral , Sobrevivência Celular
3.
Pharmaceutics ; 15(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37765234

RESUMO

Injectable peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists are being increasingly used for the treatment of diabetes. Currently, the most common route of administration is injection, which is linked to patient discomfort as well as being subjected to refrigerated storage and the requirement for efficient supply chain logistics. Buccal and sublingual routes are recognized as valid alternatives due to their high accessibility and easy administration. However, there can be several challenges, such as peptide selection, drug encapsulation, and delivery system design, which are linked to the enhancement of drug efficacy and efficiency. By using hydrophobic polymers that do not dissolve in saliva, and by using neutral or positively charged nanoparticles that show better adhesion to the negative charges generated by the sialic acid in the mucus, researchers have attempted to improve drug efficiency and efficacy in buccal delivery. Furthermore, unidirectional films and tablets seem to show the highest bioavailability as compared to sprays and other buccal delivery vehicles. This advantageous attribute can be attributed to their capability to mitigate the impact of saliva and inadvertent gastrointestinal enzymatic digestion, thereby minimizing drug loss. This is especially pertinent as these formulations ensure a more directed drug delivery trajectory, leading to heightened therapeutic outcomes. This communication describes the current state of the art with respect to the creation of nanoparticles containing peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists, and theorizes the production of mucoadhesive unidirectional release buccal tablets or films. Such an approach is more patient-friendly and can improve the lives of millions of diabetics around the world; in addition, these shelf-stable formulations ena a more environmentally friendly and sustainable supply chain network.

4.
Eur J Pharm Biopharm ; 189: 202-211, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364750

RESUMO

Nose-to-brain delivery is increasing in popularity as an alternative to other invasive delivery routes. However, targeting the drugs and bypassing the central nervous system are challenging. We aim to develop dry powders composed of nanoparticles-in-microparticles for high efficiency of nose-to-brain delivery. The size of microparticles (between 250 and 350 µm), is desired for reaching the olfactory area, located below the nose-to-brain barrier. Moreover, nanoparticles with a diameter between 150 and 200 nm are desired for traveling through the nose-to-brain barrier. The materials of PLGA or lecithin were used in this study for nanoencapsulation. Both types of capsules showed no toxicology on nasal (RPMI 2650) cells and a similar permeability coefficient (Papp) of Flu-Na, which was about 3.69 ± 0.47 × 10-6 and 3.88 ± 0.43 × 10-6 cm/s for TGF-ß-Lecithin and PLGA, respectively. The main difference was related to the location of deposition; the TGF-ß-PLGA showed a higher drug deposition in the nasopharynx (49.89 ± 25.90 %), but the TGF-ß-Lecithin formulation mostly placed in the nostril (41.71 ± 13.35 %).


Assuntos
Encéfalo , Fator de Crescimento Transformador beta , Administração Intranasal , Pós , Preparações Farmacêuticas , Fatores de Crescimento Transformadores , Tamanho da Partícula
5.
Int J Pharm ; 642: 123137, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37364780

RESUMO

Periodontal disease (PD) can be prevented by local or systemic application of epidermal growth factor receptor inhibitors (EGFRIs) that stabilize αvß6 integrin levels in the periodontal tissue, leading to an increase in the expression of anti-inflammatory cytokines, such as transforming growth factor-ß1. Systemic EGFRIs have side effects and, therefore, local treatment of PD applied into the periodontal pockets would be preferrable. Thus, we have developed slow-release three-layered microparticles of gefitinib, a commercially available EGFRI. A combination of different polymers [cellulose acetate butyrate (CAB), Poly (D, L-lactide-co-glycolide) (PLGA) and ethyl cellulose (EC)] and sugars [D-mannose, D-mannitol and D-(+)-trehalose dihydrate] were used for the encapsulation. The optimal formulation was composed of CAB, EC, PLGA, mannose and gefitinib (0.59, 0.24, 0.09, 1, and 0.005 mg/ml, respectively; labeled CEP-gef), and created microparticles of 5.7 ± 2.3 µm in diameter, encapsulation efficiency of 99.98%, and a release rate of more than 300 h. A suspension of this microparticle formulation blocked EGFR phosphorylation and restored αvß6 integrin levels in oral epithelial cells, while the respective control microparticles showed no effect.


Assuntos
Doenças Periodontais , Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Gefitinibe , Ácido Láctico , Doenças Periodontais/tratamento farmacológico , Microesferas , Tamanho da Partícula
6.
Sci Rep ; 12(1): 9949, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705561

RESUMO

Insulin nanoparticles (NPs) with high loading content have found diverse applications in different dosage forms. This work aimed to evaluate the impact of freeze-drying and spray drying process on the structures of insulin-loaded chitosan nanoparticles, with or without mannitol as cryoprotectants. We also assessed the quality of these nanoparticles by redissolving them. Before dehydration, the chitosan/sodium tripolyphosphate/insulin crosslinked nanoparticles were optimized to 318 nm of particle size, 0.18 of PDI, 99.4% of entrapment efficiency, and 25.01% of loading content. After reconstitution, all nanoparticles, except the one produced by the freeze-drying method without using mannitol, maintained their spherical particle structure. The nanoparticles dehydrated by spray drying without mannitol also showed the smallest mean particle size (376 nm) and highest loading content (25.02%) with similar entrapment efficiency (98.7%) and PDI (0.20) compared to mannitol-containing nanoparticles dehydrated by either spray drying or freeze-drying techniques. The nanoparticles dried by spray drying without mannitol also resulted in the fastest release and highest cellular uptake efficacy of insulin. This work shows that spray drying can dehydrate insulin nanoparticles without the need for cryoprotectants, creating a significant advantage in terms of greater loading capacity with lower additive requirements and operating costs as compared to conventional freeze drying approaches.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Crioprotetores/química , Liofilização/métodos , Insulina , Manitol/química , Nanopartículas/química , Tamanho da Partícula , Secagem por Atomização
7.
Molecules ; 26(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641403

RESUMO

The use of natural surfactants including plant extracts, plant hydrocolloids and proteins in nanoemulsion systems has received commercial interest due to demonstrated safety of use and potential health benefits of plant products. In this study, a whey protein isolate (WPI) from a byproduct of cheese production was used to stabilize a nanoemulsion formulation that contained hempseed oil and the Aesculus hippocastanum L. extract (AHE). A Box-Behnken experimental design was used to set the formulation criteria and the optimal nanoemulsion conditions, used subsequently in follow-up experiments that measured specifically emulsion droplet size distribution, stability tests and visual quality. Regression analysis showed that the concentration of HSO and the interaction between HSO and the WPI were the most significant factors affecting the emulsion polydispersity index and droplet size (nm) (p < 0.05). Rheological tests, Fourier transform infrared spectroscopy (FTIR) analysis and L*a*b* color parameters were also taken to characterize the physicochemical properties of the emulsions. Emulsion systems with a higher concentration of the AHE had a potential metabolic activity up to 84% in a microbiological assay. It can be concluded from our results that the nanoemulsion system described herein is a safe and stable formulation with potential biological activity and health benefits that complement its use in the food industry.


Assuntos
Aesculus/química , Cannabis/química , Emulsões , Nanoestruturas/química , Extratos Vegetais/química , Tensoativos/química , Proteínas do Soro do Leite/química , Reologia , Água/química
8.
Sci Rep ; 11(1): 9241, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927209

RESUMO

This paper theorizes the existence of a constant optimum ultrasound process time for any size-reduction operation, independent of process parameters, and dependent on product parameters. We test the concept using the case of 'ultrasonic preparation of oil-in-water nanoemulsions' as model system. The system parameters during ultrasonication of a hempseed oil nanoemulsion was evaluated by a response surface methodology, comprising lecithin and poloxamer-188 as surfactants. Results revealed that the particle size and emulsion stability was affected significantly (p < 0.05) by all product parameters (content of hempseed oil-oil phase, lecithin and polaxamer-surfactants); but was not significantly (p > 0.05) affected by process parameter ('ultrasonication process time'). Next, other process parameters (emulsion volume and ultrasonic amplitude) were tested using kinetic experiments. Magnitude of particle size reduction decreased with increasing 'ultrasonication process time' according to a first order relationship, until a minimum particle size was reached; beyond which ultrasonication no longer resulted in detectable decrease in particle size. It was found that the optimal ultrasonication process time (defined as time taken to achieve 99% of the 'maximum possible size reduction') was 10 min, and was roughly constant regardless of the process parameters (sample volume and ultrasonic amplitude). Finally, the existence of this constant optimal ultrasonication process time was proven for another emulsion system (olive oil and tween 80). Based on the results of these case studies, it could be theorized that a constant optimum ultrasonication process time exists for the ultrasonication-based size-reduction processes, dependent only on product parameters.

9.
Sci Rep ; 11(1): 72, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420136

RESUMO

Emerging formulation technologies aimed to produce nanoemulsions with improved characteristics, such as stability are attractive endeavors; however, comparisons between competing technologies are lacking. In this study, two formulation techniques that employed ultrasound and microfluidic approaches, respectively, were examined for relative capacity to produce serviceable oil in water nanoemulsions, based on hempseed oil (HSO). The ultrasound method reached > 99.5% entrapment efficiency with nanoemulsions that had an average droplet size (Z-Ave) < 180 nm and polydispersity index (PDI) of 0.15 ± 0.04. Surfactant concentration (% w/v) was found to be a significant factor (p < 0.05) controlling the Z-Ave, PDI and zeta potential of these nanoparticles. On the other hand, the microfluidic approach produced smaller particles compared to ultrasonication, with good stability observed during storage at room temperature. The Z-Ave of < 62.0 nm was achieved for microfluidic nanoemulsions by adjusting the aqueous : organic flow rate ratio and total flow rate at 4:1 and 12 mL/min, respectively. Further analyses including a morphology examination, a simulated gastrointestinal release behavior study, transepithelial transport evaluations and a toxicity test, using a Caco2-cell model, were performed to assess the functionality of the prepared formulations. The results of this study conclude that both approaches of ultrasound and microfluidics have the capability to prepare an HSO-nanoemulsion formulation, with acceptable characteristics and stability for oral delivery applications.


Assuntos
Extratos Vegetais/administração & dosagem , Administração Oral , Cannabis , Emulsões , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Microfluídica/métodos , Nanoestruturas , Ultrassom/métodos
10.
Plants (Basel) ; 10(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467047

RESUMO

Artemisia herba-alba Asso. (Wormwood) is a wild aromatic herb that is popular for its healing and medicinal effects and has been used in conventional as well as modern medicine. This research aimed at the extraction, identification, and quantification of phenolic compounds in the aerial parts of wormwood using Soxhlet extraction, as well as characterizing their antimicrobial and anitoxidant effects. The phenolic compounds were identified in different extracts by column chromatography, thin layer chromatography (TLC), and high performance liquid chromatography. Five different fractions, two from ethyl acetate extraction and three from ethanolic extraction were obtained and evaluated further. The antimicrobial activity of each fractions was evaluated against two Gram-positive (Bacillus cereus and Staphylococcus aureus) and two Gram-negative microorganisms (Escherichia coli and Proteus vulgaris) using the disc-diffusion assay and direct TLC bioautography assay. Fraction I inhibited B. cereus and P. vulgaris, Fraction II inhibited B. cereus and E. coli, Fraction III inhibited all, except for P. vulgaris, while Fractions IV and V did not exhibit strong antimicrobial effects. Their antioxidant capabilities were also measured by calculating their ability to scavenge the free radical using DPPH method and the ferric reducing antioxidant power (FRAP) assay. Ethanolic fractions III and V demonstrated excellent antioxidant properties with IC50 values less than 15.0 µg/mL, while other fractions also had IC50 values less than 80.0 µg/mL. These antioxidant effects were highly associated with the number of phenolic hydroxyl group on the phenolics they contained. These extracts demonstrated antimicrobial effects, suggesting the different phenolic compounds in these extracts had specific inhibitory effects on the growth of each bacteria. The results of this study suggested that the A. herba-alba can be a source of phenolic compounds with natural antimicrobial and antioxidant properties which can be used for potential pharmaceutical applications.

11.
Sci Rep ; 10(1): 10567, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601363

RESUMO

The seed of the hemp plant (Cannabis sativa L.) has been revered as a nutritional resource in Old World Cultures. This has been confirmed by contemporary science wherein hempseed oil (HSO) was found to exhibit a desirable ratio of omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) considered optimal for human nutrition. HSO also contains gamma-linoleic acid (GLA) and non-psychoactive cannabinoids, which further contribute to its' potential bioactive properties. Herein, we present the kinetics of the thermal stability of these nutraceutical compounds in HSO, in the presence of various antioxidants (e.g. butylated hydroxytoluene, alpha-tocopherol, and ascorbyl palmitate). We focussed on oxidative changes in fatty acid profile and acidic cannabinoid stability when HSO was heated at different temperatures (25 °C to 85 °C) for upto 24 h. The fatty acid composition was evaluated using both GC/MS and 1H-NMR, and the cannabinoids profile of HSO was obtained using both HPLC-UV and HPLC/MS methods. The predicted half-life (DT50) for omega-6 and omega-3 PUFAs in HSO at 25 °C was about 3 and 5 days, respectively; while that at 85 °C was about 7 and 5 hours respectively, with respective activation energies (Ea) being 54.78 ± 2.36 and 45.02 ± 2.87 kJ/mol. Analysis of the conjugated diene hydroperoxides (CDH) and p-Anisidine value (p-AV) revealed that the addition of antioxidants significantly (p < 0.05) limited lipid peroxidation of HSO in samples incubated at 25-85 °C for 24 h. Antioxidants reduced the degradation constant (k) of PUFAs in HSO by upto 79%. This corresponded to a significant (p < 0.05) increase in color stability and pigment retention (chlorophyll a, chlorophyll b and carotenoids) of heated HSO. Regarding the decarboxylation kinetics of cannabidiolic acid (CBDA) in HSO, at both 70 °C and 85 °C, CBDA decarboxylation led to predominantly cannabidiol (CBD) production. The half-life of CBDA decarboxylation (originally 4 days) could be increased to about 17 days using tocopherol as an antioxidant. We propose that determining acidic cannabinoids decarboxylation kinetics is a useful marker to measure the shelf-life of HSO. The results from the study will be useful for researchers looking into the thermal treatment of hempseed oil as a functional food product, and those interested in the decarboxylation kinetics of the acidic cannabinoids.


Assuntos
Antioxidantes/farmacologia , Cannabis/química , Peroxidação de Lipídeos/efeitos dos fármacos , Antioxidantes/análise , Canabidiol/metabolismo , Canabinoides/análise , Canabinoides/metabolismo , Canabinol/análogos & derivados , Canabinol/metabolismo , Clorofila A/metabolismo , Cromatografia Líquida de Alta Pressão , Descarboxilação , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Cinética , Óleos de Plantas/química , Sementes/química , Vitamina E/análise
12.
Molecules ; 25(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532010

RESUMO

In this study, two saponins-rich plant extracts, viz. Saponaria officinalis and Quillaja saponaria, were used as surfactants in an oil-in-water (O/W) emulsion based on hempseed oil (HSO). This study focused on a low oil phase content of 2% v/v HSO to investigate stable emulsion systems under minimum oil phase conditions. Emulsion stability was characterized by the emulsification index (EI), centrifugation tests, droplet size distribution as well as microscopic imaging. The smallest droplets recorded by dynamic light scattering (droplets size v. number), one day after the preparation of the emulsion, were around 50-120 nm depending the on use of Saponaria and Quillaja as a surfactant and corresponding to critical micelle concentration (CMC) in the range 0-2 g/L. The surface and interfacial tension of the emulsion components were studied as well. The effect of emulsions on environmental bacteria strains was also investigated. It was observed that emulsions with Saponaria officinalis extract exhibited slight toxic activity (the cell metabolic activity reduced to 80%), in contrast to Quillaja emulsion, which induced Pseudomonas fluorescens ATCC 17400 growth. The highest-stability samples were those with doubled CMC concentration. The presented results demonstrate a possible use of oil emulsions based on plant extract rich in saponins for the food industry, biomedical and cosmetics applications, and nanoemulsion preparations.


Assuntos
Cannabis/química , Emulsões , Extratos Vegetais/farmacologia , Óleos de Plantas/química , Pseudomonas fluorescens/crescimento & desenvolvimento , Rosaceae/química , Saponinas/farmacologia , Pseudomonas fluorescens/efeitos dos fármacos
13.
Food Chem ; 310: 125821, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31753687

RESUMO

The aim of this study was the fabrication of stable encapsulated cumin essential oil using ionic gelation method and its application in mayonnaise as a natural antioxidant. The obtained nanoparticles exhibited a positively charged surface with diameters ranging from 269 to 326 nm. In addition, results from encapsulation efficiency demonstrated that excess concentration of initial essential oil reduced the amount of entrapped essential oil. From the obtained observation, the optimal weight ratio of chitosan to cumin essential oil of 1:0.5 was selected. In vitro release study indicated an initial burst at all different pH, although the most release rate was related to acidic media (pH = 3). Furthermore, an improvement of thermal stability and antioxidant properties was observed. Regarding cytotoxicity results, loaded particles had a good biocompatibility, while there were slight prevention effects on breast and brain tumor at the highest concentration. Finally, the antioxidant properties of fabricated nanoparticles were investigated in mayonnaise. It significantly reduced peroxidase value (POV) and thiobarbituric acid (TBA) values during storage period. Overall, our observations showed the encapsulated cumin essential oil could be used as natural antioxidant.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Quitosana/química , Cuminum/química , Nanopartículas/química , Óleos Voláteis/química , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Géis/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Óleos Voláteis/farmacocinética , Tamanho da Partícula , Eletricidade Estática
14.
Molecules ; 24(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775277

RESUMO

In this paper, we present the possibility of using pea protein isolates as a stabilizer for hempseed oil (HSO)-based water/oil emulsions in conjunction with lecithin as a co-surfactant. A Box-Behnken design was employed to build polynomial models for optimization of the ultrasonication process to prepare the emulsions. The stability of the system was verified by droplet size measurements using dynamic light scattering (DLS) as well as centrifugation and thermal challenge tests. The z-ave droplet diameters of optimized emulsion were 209 and 207 nm after preparation and 1 week storage, respectively. The concentration of free Linoleic acid (C18:2; n-6) was used for calculation of entrapment efficiency in prepared nanoemulsions. At optimum conditions of the process, up to 98.63% ± 1.95 of entrapment was achieved. FTIR analysis and rheological tests were also performed to evaluate the quality of oil and emulsion, and to verify the close-to-water like behavior of the prepared samples compared to the viscous nature of the original oil. Obtained results confirmed the high impact of lecithin and pea protein concentrations on the emulsion droplet size and homogeneity confirmed by microscopic imaging. The presented results are the first steps towards using hempseed oil-based emulsions as a potential food additive carrier, such as flavor. Furthermore, the good stability of the prepared nanoemulsion gives opportunities for potential use in biomedical and cosmetic applications.


Assuntos
Emulsões/química , Aditivos Alimentares/química , Proteínas de Ervilha/química , Tensoativos/química , Difusão Dinâmica da Luz , Lecitinas/química , Nanoestruturas/química , Tamanho da Partícula , Reologia , Tensoativos/farmacologia , Viscosidade , Água/química
15.
ACS Omega ; 4(1): 2047-2052, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459455

RESUMO

Five new guaiane dimers, xylopidimers A-E (1-5), were isolated and identified from the roots of Xylopia vielana. The structures of 1-5 were elucidated by spectroscopic analysis and further confirmed by single-crystal X-ray diffraction. On the basis of the results of single-crystal X-ray analysis, 1-5 showed different carbon skeletons. Among these compounds, the unique connecting patterns of 1 and 2 caused significant differences on their carbon skeletons, which have not been reported. Moreover, 3-5 were also three new guaiane dimers. Among these compounds, 4 exhibited potent inhibitory activity against the production of nitric oxide with an IC50 value of 4.59 µM in RAW264.7 cells stimulated by lipopolysaccharide.

16.
Org Biomol Chem ; 16(37): 8408-8412, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30221279

RESUMO

Four unprecedented guaiane dimers, xylopsides A-D (1-4), were isolated and identified from the roots of Xylopia vielana. The structures of 1-4 were elucidated by spectroscopic analysis, Cu Kα X-ray crystallography and CD spectra. 1-4 showed two bridged pentacyclic skeletons between two guaiane-type sesquiterpenes, which were characterized as two different bridged ring systems. Among these compounds, 4 exhibited a moderate inhibitory activity against the production of nitric oxide with an IC50 value of 25.7 µM in RAW264.7 cells stimulated by LPS.


Assuntos
Dimerização , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/farmacologia , Xylopia/química , Animais , Camundongos , Modelos Moleculares , Conformação Molecular , Óxido Nítrico/biossíntese , Raízes de Plantas/química , Células RAW 264.7
17.
Fitoterapia ; 127: 96-100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29421243

RESUMO

Three new aporphine alkaloids, xylopialoids A-C (1-3), along with three known aporphine alkioids (4-6) and three other known compounds (7-9) were isolated from the roots of Xylopia vielana. Among these three new aporphine alkaloids, xylopialoid C (3) showed a special carbamido group directly connected to the nitrogen. The chemical structures of these nine compounds were determined by a combination of 1D and 2D NMR, MS, CD spectrum and Cu Kα X-ray crystallographic analyses. All these six alkaloids were firstly tested for the inhibitory activities against the production of NO in RAW264.7 cells stimulated by lipopolysaccharide (LPS). Among these compounds, 4 showed a potential inhibitory activity against the production of nitric oxide with IC50 value of 1.39 µM.


Assuntos
Alcaloides/isolamento & purificação , Anti-Inflamatórios/isolamento & purificação , Raízes de Plantas/química , Xylopia/química , Alcaloides/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7
18.
Fitoterapia ; 125: 18-23, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29242037

RESUMO

One unusual metal complex of cadinane sesquiterpene alkaloid (1), one new cadinane sesquiterpene alkaloid (2) and two new neolignan glycosides (3-4) along with six known cadinane sesquiterpene derivatives (5-10), nineteen known phenolic glycosides (11-29) were isolated from the aerial parts of Alangium alpinum. Structures of new crystals of metal complex were characterized by X-Ray diffraction and ICP-AES analysis. Other new compounds were elucidated by combined use and detailed analysis of HR-ESIMS, 1D and 2D NMR and CD spectroscopic method. In addition, all isolated compounds were tested for their inhibitory effects against TNF-α induced NF-κB activation in Hela cells and NO production in RAW 264.7 macrophages.


Assuntos
Alangiaceae/química , Alcaloides/isolamento & purificação , Glicosídeos/isolamento & purificação , Lignanas/isolamento & purificação , Sesquiterpenos/isolamento & purificação , Alcaloides/química , Animais , Células HeLa , Humanos , Metais/química , Camundongos , Estrutura Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Componentes Aéreos da Planta/química , Sesquiterpenos Policíclicos , Células RAW 264.7 , Sesquiterpenos/química , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA