Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
Water Res ; 263: 122167, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106623

RESUMO

Ethylmercury (EtHg), similar to methylmercury (MeHg), is highly neurotoxic and bioaccumulative. Although recent studies suggested its occurrence in natural soils and sediments, the common propylation derivatization for EtHg analysis might generate EtHg artifacts, potentially leading to its overestimation in environmental samples. Furthermore, the extensive environmental prevalence of EtHg remains unverified, keeping its importance largely uncertain. This study investigated the formation of EtHg artifacts during propylation derivatization, evaluating artifacts formation and recoveries under different extraction methods with real samples, and confirmed the widespread occurrence of EtHg in Chinese wetlands. EtHg artifacts were obviously present during the propylation derivatization and strongly dependent on the levels of Hg2+ (0.1-10 ng) in the derivatization solution (R² = 0.99), accounting for 1.38-2.14% of Hg2+. CuSO4-HNO3CH2Cl2 extraction (effectively removing Hg2+) combined with propylation derivatization offers excellent recovery (81-86%) and low artifacts (< LOD: 1.98 × 10-4 ng/g) for EtHg measurement in soils/sediments, with results aligning with those from online solid phase extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry (R2 = 0.99). Additionally, we observed the occurrence of EtHg in soil and sediment samples across 14 Chinese wetlands, with concentrations varying from 6.08 to 171 pg/g, similar to MeHg concentrations at some sites. EtHg positively correlates with MeHg, total Hg, and total organic carbon across all samples, indicating a possible biological formation. These findings help better understand and predict the prevalence of EtHg in wetlands and its key role in environmental Hg cycle.

2.
Heliyon ; 10(15): e35214, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170382

RESUMO

The environmentally responsible behavior of tourists has been one of the focal points in the field of sustainable tourism research in recent years. Taking Guangzhou City Park as an example, this study investigates the relationship between restorative perception, place attachment, and environmentally responsible behavior of urban park recreationists by constructing the theoretical framework of "cognition-emotion-behavior" of recreationalists via online questionnaire surveys and using the test method of structural equation mode. Studies have shown that: (1) When the restorative perception of the environment is compatible, malleable, and attractive, the recreationist will produce environmentally responsible behavior. Meanwhile, when the environment has a sense of distance and compatibility, it will promote the active environmentally responsible behavior of tourists; (2) the path of perceptual environmental compatibility in the restorative perception of recreationists being → place dependence→ place identity → environmentally responsible behavior has a positive impact on environmentally responsible behavior; (3) place attachment has a significant positive impact on environmentally responsible behavior. This paper suggests that urban park management governors should focus on improving the charm and attractiveness of parks, diversifying recreational activities, and creating emotional attachment places, so as to promote the development of urban parks and meet the diverse needs and experiences of park recreation.

3.
Int J Biol Macromol ; 277(Pt 3): 134401, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097049

RESUMO

An imbalance between energy intake and energy expenditure predisposes obesity and its related metabolic diseases. Soluble dietary fiber has been shown to improve metabolic homeostasis mainly via microbiota reshaping. However, the application and metabolic effects of insoluble fiber are less understood. Herein, we employed nanotechnology to design citric acid-crosslinked carboxymethyl cellulose nanofibers (CL-CNF) with a robust capacity of expansion upon swelling. Supplementation with CL-CNF reduced food intake and delayed digestion rate in mice by occupying stomach. Besides, CL-CNF treatment mitigated diet-induced obesity and insulin resistance in mice with enhanced energy expenditure, as well as ameliorated inflammation in adipose tissue, intestine and liver and reduced hepatic steatosis, without any discernible signs of toxicity. Additionally, CL-CNF supplementation resulted in enrichment of probiotics such as Bifidobacterium and decreased in the relative abundances of deleterious microbiota expressing bile salt hydrolase, which led to increased levels of conjugated bile acids and inhibited intestinal FXR signaling to stimulate the release of GLP-1. Taken together, our findings demonstrate that CL-CNF administration protects mice from diet-induced obesity and metabolic dysfunction by reducing food intake, enhancing energy expenditure and remodeling gut microbiota, making it a potential therapeutic strategy against metabolic diseases.

4.
Gene Ther ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961279

RESUMO

Neovascular age-related macular degeneration (nAMD) causes severe visual impairment. Pigment epithelium-derived factor (PEDF), soluble CD59 (sCD59), and soluble fms-like tyrosine kinase-1 (sFLT-1) are potential therapeutic agents for nAMD, which target angiogenesis and the complement system. Using the AAV2/8 vector, two bi-target gene therapy agents, AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59, were generated, and their therapeutic efficacy was investigated in laser-induced choroidal neovascularization (CNV) and Vldlr-/- mouse models. After a single injection, AAV2/8-mediated gene expression was maintained at high levels in the retina for two months. Both AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 significantly reduced CNV development for an extended period without side effects and provided efficacy similar to two injections of current anti-vascular endothelial growth factor monotherapy. Mechanistically, these agents suppressed the extracellular signal-regulated kinase and nuclear factor-κB pathways, resulting in anti-angiogenic activity. This study demonstrated the safety and long-lasting effects of AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 in CNV treatment, providing a promising therapeutic strategy for nAMD.

5.
Food Chem ; 460(Pt 1): 140496, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032290

RESUMO

Vinasse fish (VF), a traditional Chinese food, is unique in flavor. However, the key aroma compounds influencing consumer acceptance of VF remain unclear. In this study, the key aroma compounds in three types of VF were explored by a sensomics approach. The results indicated that a total of 50 aroma compounds were quantified, of which 22 compounds exhibited odor activity values ≥1 were key aroma contributors. Eleven key aroma compounds were further confirmed by recombination and omission experiments. Ethyl hexanoate, 1-octen-3-one, and trans-anethole were mutual key aromas, while eugenol, ethyl heptanoate, (2E)-2-nonenal, and hexanal were distinct aroma markers. Particularly, ethyl heptanoate, γ-nonalactone, and eugenol were newly identified as key aroma compounds in VF. Overall, this study revealed the key aroma compounds and their differences in three types of vinasse fish, which will provide profound insights for comprehensively exploring the formation and target regulation of unique flavor in vinasse fish.

6.
Mater Horiz ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042375

RESUMO

In the pursuit of effective thermal management for electronic devices, it is crucial to develop insulation thermal interface materials (TIMs) that exhibit exceptional through-plane thermal conductivity, low thermal resistance, and minimal compression modulus. Boron nitride (BN), given its outstanding thermal conduction and insulation properties, has garnered significant attention as a potential material for this purpose. However, previously reported BN-based composites have consistently demonstrated through-plane thermal conductivity below 10 W m-1 K-1 and high compression modulus, whilst also presenting challenges in terms of mass production. In this study, low molecular weight polydimethylsiloxane (PDMS) and large-size BN were utilized as the foundational materials. Utilizing a rolling-curing integrated apparatus, we successfully accomplished the continuous preparation of large-sized, high-adhesion BN films. Subsequent implementation of stacking, cold pressing, and vertical cutting techniques enabled the attainment of a remarkable BN-based TIM, characterized by an unprecedented through-plane thermal conductivity of up to 12.11 W m-1 K-1, remarkably low compression modulus (55 kPa), and total effective thermal resistance (0.16 °C in2 W-1, 50 Psi). During the TIMs performance evaluation, our TIMs demonstrated superior heat dissipation capabilities compared with commercial TIMs. At a heating power density of 40 W cm-2, the steady-state temperature of the ceramic heating element was found to be 7 °C lower than that of the commercial TIMs. This pioneering feat not only contributes valuable technical insights for the development of high-performance insulating TIMs but also establishes a solid foundation for widespread implementation in thermal management applications across a range of electronic devices.

7.
Materials (Basel) ; 17(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998298

RESUMO

This work explores the effect of a Zn1-xSnxOy (ZTO) layer as a potential replacement for CdS in Sb2(S,Se)3 devices. Through the use of Afors-het software v2.5, it was determined that the ZTO/Sb2(S,Se)3 interface exhibits a lower conduction band offset (CBO) value of 0.34 eV compared to the CdS/Sb2(S,Se)3 interface. Lower photo-generated carrier recombination can be obtained at the interface of the ZTO/Sb2(S,Se)3 heterojunction. In addition, the valence band offset (VBO) value at the ZTO/Sb2(S,Se)3 interface increases to 1.55 eV. The ZTO layer increases the efficiency of the device from 7.56% to 11.45%. To further investigate the beneficial effect of the ZTO layer on the efficiency of the device, this goal has been achieved by five methods: changing the S content of the absorber, changing the thickness of the absorber, changing the carrier concentration of ZTO, using various Sn/(Zn+Sn) ratios in ZTO, and altering the thickness of the ZTO layer. When the S content in Sb2(S,Se)3 is around 60% and the carrier concentration is about 1018 cm-3, the efficiency is optimal. The optimal thickness of the Sb2(S,Se)3 absorber layer is 260 nm. A ZTO/Sb2(S,Se)3 interface with a Sn/(Zn+Sn) ratio of 0.18 exhibits a better CBO value. It is also found that a ZTO thickness of 20 nm is needed for the best efficiency.

8.
Environ Sci Technol ; 58(32): 14410-14420, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39082216

RESUMO

Complexes with low-molecular-weight thiols are crucial species of methylmercury (MeHg) excreted by anaerobic Hg-methylating microbes, notably, MeHg-cysteine (MeHg-Cys). As MeHg-Cys diffuses into surface water, it would undergo a ligand exchange process with dissolved organic matter (DOM) under nonsulfidic conditions, inevitably altering MeHg speciation and bioavailability to phytoplankton. In this study, we investigated the competitive binding kinetics between MeHg-Cys and Suwannee River natural organic matter, and their influence on the adsorption and uptake of MeHg by the cyanobacterium, Synechocystis sp. PCC6803. Liquid chromatography-inductively coupled plasma mass spectrometry was employed to monitor the kinetics processes involving competition of DOM with Cys for MeHg binding, which revealed that competitive binding kinetics were dictated by the abundance of thiol moieties in DOM. Thiol concentrations of 0.97 and 49.34 µmol of thiol (g C)-1 resulted in competitive binding rate constant (k values) of 0.30 and 3.47 h-1, respectively. Furthermore, the time-dependent competitive binding of DOM toward MeHg-Cys significantly inhibited MeHg adsorption and uptake by cyanobacteria, an effect that was amplified by an increased thiol abundance in DOM. These findings offer valuable insights into the kinetic characteristics of MeHg's fate and transport, as well as their impact on bioconcentration in aquatic organisms within natural aquatic ecosystems.


Assuntos
Compostos de Metilmercúrio , Compostos de Sulfidrila , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/química , Adsorção , Cinética , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/química , Cisteína/metabolismo , Cisteína/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química
9.
J Hazard Mater ; 477: 135321, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068886

RESUMO

Rice consumption is a major pathway for human cadmium (Cd) exposure. Understanding Cd behavior in the soil-rice system, especially under field conditions, is pivotal for controlling Cd accumulation. This study analyzed Cd concentrations and isotope compositions (δ114/110Cd) in rice plants and surface soil sampled at different times, along with urinary Cd of residents from typical Cd-contaminated paddy fields in Youxian, Hunan, China. Soil water-soluble Cd concentrations varied across sampling times, with δ114/110Cdwater lighter under drained than flooded conditions, suggesting supplementation of water-soluble Cd by isotopically lighter Cd pools, increasing Cd phytoavailability. Both water-soluble Cd and atmospheric deposition contributed to rice Cd accumulation. Water-soluble Cd's contribution increased from 28-52% under flooded to 58-87% under drained conditions due to increased soil Cd phytoavailability. Atmospheric deposition's contribution (12-72%) increased with potential atmospheric deposition flux among sampling areas. The enrichment of heavy Cd isotopes occurred from root-stem-grain to prevent rice Cd accumulation. The different extent of enrichment of heavy isotopes in urine indicated different Cd exposure sources. These findings provide valuable insights into the speciation and phytoavailability changes of Cd in the soil-rice system and highlight the potential application of Cd isotopic fingerprinting in understanding the environmental fate of Cd.


Assuntos
Cádmio , Oryza , Poluentes do Solo , Oryza/metabolismo , Oryza/química , Cádmio/análise , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , China , Solo/química , Humanos , Isótopos , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Monitoramento Ambiental , Fracionamento Químico
10.
Hellenic J Cardiol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871180

RESUMO

BACKGROUND: A couple of cardiac magnetic resonance (CMR) attributes strongly predict adverse remodeling after ST-segment elevation myocardial infarction (STEMI); however, the value of incorporating high-risk CMR attributes, particularly, in patients with non-reduced ejection fraction, remains undetermined. This study sought to evaluate the independent and incremental predictive value of a multiparametric CMR approach for adverse remodeling after STEMI across left ventricular ejection fraction (LVEF) categories. METHODS: A total of 157 patients with STEMI undergoing primary percutaneous coronary intervention were prospectively enrolled. Adverse remodeling was defined as ≥20% enlargement in left ventricular end-diastolic volume from index admission to 3 months of follow-up. RESULTS: Adverse remodeling occurred in 23.6% of patients. After adjustment for clinical risk factors, a stroke volume index <29.6 mL/m2, a global longitudinal strain >-7.5%, an infarct size >39.2%, a microvascular obstruction >4.9%, and a myocardial salvage index <36.4 were independently associated with adverse remodeling. The incidence of adverse remodeling increased with the increasing number of high-risk CMR attributes, regardless of LVEF (LVEF ≤ 40%: P = 0.026; 40% < LVEF < 50%: P = 0.001; LVEF ≥ 50%: P < 0.001). The presence of ≥4 high-risk attributes was an independent predictor of LV adverse remodeling (70.0% vs. 16.8%, adjusted OR 9.68, 95 CI% 3.25-28.87, P < 0.001). Furthermore, the number of high-risk CMR attributes had an incremental predictive value over reduced LVEF and baseline clinical risk factors (AUC: 0.81 vs. 0.68; P = 0.002). CONCLUSIONS: High-risk CMR attributes showed a significant association with adverse remodeling after STEMI across LVEF categories. This imaging-based model provided incremental value for adverse remodeling over traditional clinical factors and LVEF.

11.
Exp Mol Med ; 56(7): 1643-1654, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38945958

RESUMO

The senescence of alveolar type II (AT2) cells impedes self-repair of the lung epithelium and contributes to lung injury in the setting of idiopathic pulmonary fibrosis (IPF). Yes-associated protein 1 (YAP1) is essential for cell growth and organ development; however, the role of YAP1 in AT2 cells during pulmonary fibrosis is still unclear. YAP1 expression was found to be downregulated in the AT2 cells of PF patients. Deletion of YAP1 in AT2 cells resulted in lung injury, exacerbated extracellular matrix (ECM) deposition, and worsened lung function. In contrast, overexpression of YAP1 in AT2 cells promoted alveolar regeneration, mitigated pulmonary fibrosis, and improved lung function. In addition, overexpression of YAP1 alleviated bleomycin (BLM) -induced senescence of alveolar epithelial cells both in vivo and in vitro. Moreover, YAP1 promoted the expression of peroxiredoxin 3 (Prdx3) by directly interacting with TEAD1. Forced expression of Prdx3 inhibited senescence and improved mitochondrial dysfunction in BLM-treated MLE-12 cells, whereas depletion of Prdx3 partially abrogated the protective effect of YAP1. Furthermore, overexpression of Prdx3 facilitated self-repair of the injured lung and reduced ECM deposition, while silencing Prdx3 attenuated the antifibrotic effect of YAP1. In conclusion, this study demonstrated that YAP1 alleviates lung injury and pulmonary fibrosis by regulating Prdx3 expression to improve mitochondrial dysfunction and block senescence in AT2 cells, revealing a potential novel therapeutic strategy for pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares , Senescência Celular , Fibrose Pulmonar , Proteínas de Sinalização YAP , Proteínas de Sinalização YAP/metabolismo , Animais , Células Epiteliais Alveolares/metabolismo , Camundongos , Humanos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/etiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Masculino , Bleomicina , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/etiologia , Modelos Animais de Doenças , Linhagem Celular
12.
Opt Express ; 32(8): 13408-13418, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859312

RESUMO

Fiber optic hydrophones (FOHs) offer the notable advantage of electromagnetic interference resistance. Nevertheless, overcoming the challenge of sustaining stable, high-performance operation in intricate underwater settings at a low cost remains a considerable obstacle for them. To circumvent the restrictions noted above, we employed a miniaturized FOH, utilizing an easily fabricated extrinsic Fabry-Perot interferometer (EFPI) which is made up of a composite chromium-aluminum (Cr-Al) membrane and fiber. The linear demodulation also suppresses the drift issue in the output spectrum. The average sound pressure sensitivity of the sensor, according to experimental findings, is around -139.15 dB re 1 V/µPa, while the equivalent noise sound pressure at 1 kHz is 51.52 dB re 1 µPa/Hz1/2. This sensor has a lot of potential because of features like sensitive low-frequency response and noise performance.

13.
Acta Pharm Sin B ; 14(6): 2581-2597, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828159

RESUMO

Doxorubicin (DOX)-mediated cardiotoxicity can exacerbate mortality in oncology patients, but related pharmacotherapeutic measures are relatively limited. Ferroptosis was recently identified as a major mechanism of DOX-induced cardiotoxicity. Idebenone, a novel ferroptosis inhibitor, is a well-described clinical drug widely used. However, its role and pathological mechanism in DOX-induced cardiotoxicity are still unclear. In this study, we demonstrated the effects of idebenone on DOX-induced cardiotoxicity and elucidated its underlying mechanism. A single intraperitoneal injection of DOX (15 mg/kg) was administrated to establish DOX-induced cardiotoxicity. The results showed that idebenone significantly attenuated DOX-induced cardiac dysfunction due to its ability to regulate acute DOX-induced Fe2+ and ROS overload, which resulted in ferroptosis. CESTA and BLI further revealed that idebenone's anti-ferroptosis effect was mediated by FSP1. Interestingly, idebenone increased FSP1 protein levels but did not affect Fsp1 mRNA levels in the presence of DOX. Idebenone could form stable hydrogen bonds with FSP1 protein at K355, which may influence its association with ubiquitin. The results confirmed that idebenone stabilized FSP1 protein levels by inhibiting its ubiquitination degradation. In conclusion, this study demonstrates idebenone attenuated DOX-induced cardiotoxicity by inhibiting ferroptosis via regulation of FSP1, making it a potential clinical drug for patients receiving DOX treatment.

14.
ACS Appl Mater Interfaces ; 16(24): 30874-30889, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856922

RESUMO

A new composite sponge assisted by magnetic field-mediated guidance was developed for effective hemostasis. It was based on polydopamine capillary-channel agarose (PDA-CAGA) sponge as matrix; meanwhile, the combination of deep eutectic solvent (DES, choline chloride:glycerol = 1:1, M/M)-dispersed Fe3O4 nanoparticles after fabrication by tannic acid (DES-Fe3O4@TA) was applied as hemostatic magnetic fluid. This sponge had oriented and aligned capillary channels realized by a 3D printed pattern, which endowed them with obvious shape memory and liquid absorption performance. Computational simulation was performed to describe the fluid status in channels; DES-Fe3O4@TA exhibited good magnetic properties, fluidity, and stability. In addition, the sponge driven to react rapidly with the bleeding site under the effect of a magnetic field presented a shorter hemostasis time (reduced by 85.02% in the tail and 81.07% in the liver of rats) and less blood loss (reduced by 97.08% in the tail and 91.50% in the liver) than those of medical gelatin sponge (GS). Meanwhile, the multifunctional material also exhibited better biocompatibility, procoagulant performance, and significant inhibition on S. aureus and E. coli than GS. As a whole, this work proposed a new strategy for rapid hemostasis by designing a magnetic field assisted composite bacteriostatic material, which also expanded the applications of green solvents in the clinical management field.


Assuntos
Escherichia coli , Sefarose , Staphylococcus aureus , Animais , Ratos , Sefarose/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Solventes/química , Hemostasia/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Indóis/química , Antibacterianos/química , Antibacterianos/farmacologia , Hemostáticos/química , Hemostáticos/farmacologia , Campos Magnéticos , Masculino , Ratos Sprague-Dawley
15.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38844070

RESUMO

INTRODUCTION AND OBJECTIVES: Coronary microvascular dysfunction (CMD) is highly prevalent and is recognized as an important clinical entity in patients with coronary heart disease (CHD). Nevertheless, the association of CMD with adverse cardiovascular events in the spectrum of CHD has not been systemically quantified. METHODS: We searched electronic databases for studies on patients with CHD in whom coronary microvascular function was measured invasively, and clinical events were recorded. The primary endpoint was major adverse cardiac events (MACE), and the secondary endpoint was all-cause death. Estimates of effect were calculated using a random-effects model from published risk ratios. RESULTS: We included 27 studies with 11 404 patients. Patients with CMD assessed by invasive methods had a higher risk of MACE (RR, 2.18; 95%CI, 1.80-2.64; P<.01) and all-cause death (RR, 1.88; 95%CI, 1.55-2.27; P<.01) than those without CMD. There was no significant difference in the impact of CMD on MACE (interaction P value=.95) among different invasive measurement modalities. The magnitude of risk of CMD assessed by invasive measurements for MACE was greater in acute coronary syndrome patients (RR, 2.84, 95%CI, 2.26-3.57; P<.01) than in chronic coronary syndrome patients (RR, 1.77, 95%CI, 1.44-2.18; P<.01) (interaction P value<.01). CONCLUSIONS: CMD based on invasive measurements was associated with a high incidence of MACE and all-cause death in patients with CHD. The magnitude of risk for cardiovascular events in CMD as assessed by invasive measurements was similar among different methods but varied among CHD populations.

16.
J Nanobiotechnology ; 22(1): 374, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926723

RESUMO

BACKGROUND: Hypoxia-activated prodrugs present new opportunities for safe and effective tumor drug resistance therapy due to their high selectivity for hypoxic cells. However, the uneven distribution of oxygen in solid tumor and insufficient hypoxia in the tumor microenvironment greatly limit its therapeutic efficacy. RESULTS: In this paper, a novel AQ4N-Mn(II)@PDA coordination nanoplatform was designed and functionalized with GMBP1 to target drug-resistant tumor cells. Its excellent photothermal conversion efficiency could achieve local high-temperature photothermal therapy in tumors, which could not only effectively exacerbate tumor hypoxia and thus improve the efficacy of hypoxia-activated chemotherapy of AQ4N but also significantly accelerate Mn2+-mediated Fenton-like activity to enhance chemodynamic therapy. Moreover, real-time monitoring of blood oxygen saturation through photoacoustic imaging could reflect the hypoxic status of tumors during treatment. Furthermore, synergistic treatment effectively inhibited tumor growth and improved the survival rate of mice bearing orthotopic drug-resistant tumors. CONCLUSIONS: This study not only provided a new idea for PTT combined with hypoxia-activated chemotherapy and CDT for drug-resistant tumors but also explored a vital theory for real-time monitoring of hypoxia during treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Terapia Fototérmica , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Terapia Fototérmica/métodos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Microambiente Tumoral/efeitos dos fármacos , Camundongos Nus , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Hipóxia Tumoral/efeitos dos fármacos , Manganês/química , Feminino , Neoplasias/tratamento farmacológico , Antraquinonas
17.
Angew Chem Int Ed Engl ; : e202408758, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899532

RESUMO

Electrochemical nitrate reduction reaction (NitRR) uses nitrate from wastewater, offering a hopeful solution for environmental issues and ammonia production. Yet, varying nitrate levels in real wastewater greatly affect NitRR, slowing down its multi-step process. Herein, a multi-strategy approach was explored through the design of ordered mesoporous intermetallic AuCu3 nanocorals with ultrathin Au skin (meso-i-AuCu3@ultra-Au) as an efficient and concentration-versatile catalyst for NitRR. The highly penetrated structure, coupled with the compressive stress exerted on the skin layer, not only facilitates rapid electron/mass transfer, but also effectively modulates the surface electronic structure, addressing the concentration-dependent challenges encountered in practical NitRR process. As expected, the novel catalyst demonstrates outstanding NitRR activities and Faradaic efficiencies exceeding 95 % across a real and widespread concentration range (10-2000 mM). Notably, its performance at each concentration matched or exceeded that of the best-known catalyst designed for that concentration. Multiple operando spectroscopies unveiled the catalyst concurrently optimized the adsorption behavior of different intermediates (adsorbed *NOx and *H) while expediting the hydrogenation steps, leading to an efficient overall reduction process. Moreover, the catalyst also displays promising potential for use in ammonia production at industrial-relevant current densities and in conceptual zinc-nitrate batteries, serving trifunctional nitrate conversion, ammonia synthesis and power supply.

18.
Front Med (Lausanne) ; 11: 1388045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751981

RESUMO

Background: Primary dysmenorrhea (PD) is one of the most common reasons that affect the life quality of women during childbearing age. This research aims to explore the efficacy and curative effect characteristics of oral contraceptives and low-power visible-light-activated photodynamic therapy (PDT). Besides investigating the possible mechanism of PDT, we expected to find a treatment model with better efficacy and fewer side effects. Method: It was a multicenter, randomized, parallel-controlled study. Eligible participants were randomly assigned to three groups: placebo group, oral contraceptive (Marvelon) group, and the PDT group. They were treated continuously for three menstrual cycles and followed up for two cycles after treatment. The scores of the visual analog scale (VAS) and the concentration of pain-related small molecules in blood before and after treatment were recorded in each group, which can evaluate the therapeutic characteristics of different treatments. Result: Both Marvelon and PDT were effective. The effect of Marvelon appears quickly which can significantly relieve symptoms at the beginning, while PDT shows a relatively slow role. There was no significant difference in the final efficacy two cycles after treatment. The therapeutic effect was achieved by reducing the concentrations of prostaglandin 2 (PGE2) and endothelin (ET) in the blood. Conclusion: Marvelon and PDT are effective methods for the treatment of PD. The long-term efficacy of the two is similar, while the therapeutic characteristics and the side effects are different. Patients can choose the suitable way according to their individual needs.

19.
Environ Pollut ; 351: 124048, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714230

RESUMO

Sulfate-reducing bacteria (SRB) play pivotal roles in the biotransformation of mercury (Hg). However, unrevealed global responses of SRB to Hg have restricted our understanding of details of Hg biotransformation processes. The absence of protein-protein interaction (PPI) network under Hg stimuli has been a bottleneck of proteomic analysis for molecular mechanisms of Hg transformation. This study constructed the first comprehensive PPI network of SRB in response to Hg, encompassing 67 connected nodes, 26 independent nodes, and 121 edges, covering 93% of differentially expressed proteins from both previous studies and this study. The network suggested that proteomic changes of SRB in response to Hg occurred globally, including microbial metabolism in diverse environments, carbon metabolism, nucleic acid metabolism and translation, nucleic acid repair, transport systems, nitrogen metabolism, and methyltransferase activity, partial of which could cover the known knowledge. Antibiotic resistance was the original response revealed by this network, providing insights into of Hg biotransformation mechanisms. This study firstly provided the foundational network for a comprehensive understanding of SRB's responses to Hg, convenient for exploration of potential targets for Hg biotransformation. Furthermore, the network indicated that Hg enhances the metabolic activities and modification pathways of SRB to maintain cellular activities, shedding light on the influences of Hg on the carbon, nitrogen, and sulfur cycles at the cellular level.


Assuntos
Mercúrio , Mercúrio/metabolismo , Mapas de Interação de Proteínas , Proteínas de Bactérias/metabolismo , Biotransformação , Sulfatos/metabolismo , Bactérias/metabolismo , Proteômica , Bactérias Redutoras de Enxofre/metabolismo
20.
Bioresour Technol ; 402: 130831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734262

RESUMO

Mercury (Hg), particularly organic mercury, poses a global concern due to its pronounced toxicity and bioaccumulation. Bioremediation of organic mercury in high-salt wastewater faces challenges due to the growth limitations imposed by elevated Cl- and Na+ concentrations on microorganisms. In this study, an isolated marine bacterium Alteromonas macleodii KD01 was demonstrated to degrade methylmercury (MeHg) efficiently in seawater and then was applied to degrade organic mercury (MeHg, ethylmercury, and thimerosal) in simulated high-salt wastewater. Results showed that A. macleodii KD01 can rapidly degrade organic mercury (within 20 min) even at high concentrations (>10 ng/mL), volatilizing a portion of Hg from the wastewater. Further analysis revealed an increased transcription of organomercury lyase (merB) with rising organic mercury concentrations during the exposure process, suggesting the involvement of mer operon (merA and merB). These findings highlight A. macleodii KD01 as a promising candidate for addressing organic mercury pollution in high-salt wastewater.


Assuntos
Alteromonas , Biodegradação Ambiental , Mercúrio , Mercúrio/metabolismo , Alteromonas/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Água do Mar/microbiologia , Aerobiose , Compostos de Metilmercúrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA