Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biomater Sci ; 12(10): 2717-2729, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38619816

RESUMO

Polymeric heart valves (PHVs) present a promising alternative for treating valvular heart diseases with satisfactory hydrodynamics and durability against structural degeneration. However, the cascaded coagulation, inflammatory responses, and calcification in the dynamic blood environment pose significant challenges to the surface design of current PHVs. In this study, we employed a surface-initiated polymerization method to modify polystyrene-block-isobutylene-block-styrene (SIBS) by creating three hydrogel coatings: poly(2-methacryloyloxy ethyl phosphorylcholine) (pMPC), poly(2-acrylamido-2-methylpropanesulfonic acid) (pAMPS), and poly(2-hydroxyethyl methacrylate) (pHEMA). These hydrogel coatings dramatically promoted SIBS's hydrophilicity and blood compatibility at the initial state. Notably, the pMPC and pAMPS coatings maintained a considerable platelet resistance performance after 12 h of sonication and 10 000 cycles of stretching and bending. However, the sonication process induced visible damage to the pHEMA coating and attenuated the anti-coagulation property. Furthermore, the in vivo subcutaneous implantation studies demonstrated that the amphiphilic pMPC coating showed superior anti-inflammatory and anti-calcification properties. Considering the remarkable stability and optimal biocompatibility, the amphiphilic pMPC coating constructed by surface-initiated polymerization holds promising potential for modifying PHVs.


Assuntos
Materiais Revestidos Biocompatíveis , Hidrogéis , Fosforilcolina , Propriedades de Superfície , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Teste de Materiais , Poli-Hidroxietil Metacrilato/química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Metacrilatos/química , Polímeros/química , Polímeros/farmacologia , Próteses Valvulares Cardíacas , Valvas Cardíacas/efeitos dos fármacos , Humanos , Camundongos , Interações Hidrofóbicas e Hidrofílicas
2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673947

RESUMO

Phyllotreta striolata, the striped flea beetle, is one of the most destructive pests in Brassicaceae plants worldwide. Given the drawbacks associated with long-term use of chemical insecticides, green strategies based on chemical ecology are an effective alternative for beetle control. However, the lack of information on beetle ecology has hindered the development of effective biocontrol strategies. In this report, we identified two odorants, (S)-cis-verbenol and (-)-verbenone, which displayed significant attraction for P. striolata (p < 0.05), indicating their great potential for P. striolata management. Using the Drosophila "empty neuron" system, an antenna-biased odorant receptor, PstrOR17, was identified as responsible for the detection of (-)-verbenone and (S)-cis-verbenol. Furthermore, the interactions between PstrOR17 and (-)-verbenone or (S)-cis-verbenol were predicted via modeling and molecular docking. Finally, we used RNAi to confirm that PstrOR17 is essential for the detection of (-)-verbenone and (S)-cis-verbenol to elicit an attraction effect. Our results not only lay a foundation for the development of new and effective nonchemical insecticide strategies based on (S)-cis-verbenol and (-)-verbenone, but also provide new insight into the molecular basis of odorant recognition in P. striolata.


Assuntos
Monoterpenos Bicíclicos , Besouros , Receptores Odorantes , Animais , Antenas de Artrópodes/efeitos dos fármacos , Antenas de Artrópodes/metabolismo , Monoterpenos Bicíclicos/farmacologia , Besouros/efeitos dos fármacos , Besouros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Simulação de Acoplamento Molecular , Monoterpenos/química , Monoterpenos/farmacologia , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
3.
J Pharm Anal ; 14(2): 276-283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38464789

RESUMO

The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.

4.
Small ; : e2310869, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363059

RESUMO

The traditional lateral flow immunoassay (LFIA) with a single signal output mode may encounter challenges such as low sensitivity, poor detection range, and susceptibility to external interferences. These limitations hinder its ability to meet the growing demand for advanced LFIA. To address these issues, the rational development of multifunctional labels for multimodal LFIA emerges as a promising strategy. Herein, this study reports a multimodal LFIA using "four-in-one" multifunctional dandelion-like gold@platinum nanoparticles (MDGP). The inherent properties of MDGP, such as the broad absorption spectrum, porous dandelion-like nanostructure, and bimetallic composition with gold and platinum, endow them with capacities in dual spectral-overlapped fluorescence quenching, optical readout, catalytic activity, and photothermal effect. Benefiting from their multifunctional properties, the MDGP-LFIA enables multimodal outputs including fluorescent, colorimetric, and photothermal signals. This multimodal MDGP-LFIA allows for the detection of acetamiprid at a range of 0.01-50 ng mL-1 , with the lowest qualitative and quantitative detection results of 0.5 and 0.008 ng mL-1 , respectively, significantly better than the traditional gold nanoparticles-based LFIA. The diversity, complementarity, and synergistic effect of integrated output signals in this multimodal MDGP-LFIA improve the flexibility, practicability, and accuracy of detection, holding great promise as a point-of-care testing platform in versatile application scenarios.

6.
Anal Chem ; 95(30): 11287-11295, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459591

RESUMO

A novel virtual screening strategy was proposed for the profiling and discovery of active variable regions (VRs) that encode hapten-specific recombinant antibodies (rAbs). Chlorpyrifos, a hazardous organophosphorus pesticide, was selected as the target. First, a VR model-14G4 from anti-chlorpyrifos hybridoma was built via homology modeling. Its binding pattern toward seven organophosphorus analogues was assessed through virtual screening by performing molecular docking. Based on energy scoring, visual examination, and molecular interaction analysis, chlorpyrifos-methyl was also inferred as the high-affinity target for model-14G4 and was then confirmed via a non-competitive surface plasmon resonance (SPR) assay. Subsequently, we attempted to discover hapten-specific VRs by creating a collection of VR models for anonymous testing. Chlorpyrifos and model-14G4 were employed as the known hit and active VRs, respectively. After molecular docking, a novel anti-chlorpyrifos VR (model-1) was identified due to its satisfactory energy scoring and a similar binding pattern to the reference model-14G4. Expressed by HEK293(F) mammalian cells, the newly prepared full-length rAb-model-1 and rAb-14G4 exhibited high sensitivities for detecting chlorpyrifos by the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA), with IC50 of 3.01 ng/mL and 42.82 ng/mL, respectively. They recognized chlorpyrifos-methyl with a cross-reactivity (CR) of 2.5-17.3%. Moreover, the binding properties of rAb-model-1 for recognizing chlorpyrifos and chlorpyrifos-methyl were confirmed via a non-competitive microscale thermophoresis (MST) method. Thus, the experimental results showed good agreement with computational outputs on antibody profiling. Furthermore, the recognition diversity of rAb-model-1 for chlorpyrifos and chlorpyrifos-methyl was studied via molecular dynamics simulation. Overall, the proposed study provides a versatile and economical strategy for antibody characterization and promotes the in vitro production of rAbs for pesticide monitoring.


Assuntos
Praguicidas , Animais , Humanos , Simulação de Acoplamento Molecular , Compostos Organofosforados , Células HEK293 , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Recombinantes , Haptenos , Mamíferos
7.
Biosensors (Basel) ; 12(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36290929

RESUMO

Neonicotinoids are the most commonly used insecticides due to their effectiveness. However, non-targeted insects, especially bees, are also affected by neonicotinoids. Therefore, neonicotinoid application can contribute to the declining bee populations worldwide. The presented study describes the development of novel competitive, fluorescent microsphere-based suspension immunoassays for neonicotinoid profiling and their application to bees and essential bee-related matrices, using the Multi-Analyte Profiling (xMAP) technology. For the construction of these neonicotinoid microsphere immunoassays (nMIAs), neonicotinoid-ovalbumin conjugates were coupled to unique fluorescent, paramagnetic microspheres, which competed with the free neonicotinoids that were present in test samples for interacting with the corresponding, specific antibodies. In total, five independent nMIA's were developed for the detection of imidacloprid, acetamiprid, clothianidin, thiacloprid, thiamethoxam, dinotefuran, nitenpyram and imidaclothiz with the limits of detection being for 0.01 ng/mL, 0.01 ng/mL, 0.02 ng/mL, 0.02 ng/mL, 0.003 ng/mL, 2.95 ng/mL, 0.09 ng/mL and 0.04 ng/mL, respectively. The developed nMIAs were applied to fortified matrices including surface water, pollen, honey and honeybees. All of the neonicotinoids, except dinotefuran, could be sensitively detected in all of the tested environmental matrices and bees, with there being sensitivities of 1 ng/mL in water and 10 ng/g in solid materials. These nMIAs provide a rapid profiling method for all of the common neonicotinoids, including those that are banned by the European Union for outdoor use. The developed method can contribute to healthy and sustainable beekeeping, globally, via its application in the apiary environment.


Assuntos
Inseticidas , Abelhas , Animais , Tiametoxam , Inseticidas/análise , Microesferas , Ovalbumina , Neonicotinoides , Água
8.
Biosensors (Basel) ; 12(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36140100

RESUMO

Residues of neonicotinoid pesticides have potential risks to food, environmental and biological safety. In this study, the hapten toward imidacloprid was adopted to gain antibodies. After molecular modeling, the electrostatic potentials of eight commonly-used neonicotinoid pesticides were individually calculated to analyze the structural similarity. Two representative compounds (imidacloprid and acetamiprid) with moderate similarity were rationally selected for hybridoma screening. Using this strategy, four clones of broad-specific monoclonal antibodies (mAbs) against multiple neonicotinoids were obtained, and the clone 6F11 exhibited the broadest spectrum to six neonicotinoid pesticides and two metabolites, with half-maximal inhibitory concentrations (IC50) ranging from 0.20 to 5.92 ng/mL. Then, the novel antibody gene was sequenced and successfully expressed in full-length IgG form using mammalian cells. Based on the sensitive recombinant antibody, a gold lateral-flow immunosensing strip assay was developed and it was qualified for rapid detection of imidacloprid, clothianidin or imidaclothiz residues in food samples.


Assuntos
Inseticidas , Animais , Anticorpos Monoclonais , Ouro , Haptenos , Imunoglobulina G , Inseticidas/análise , Mamíferos , Neonicotinoides , Nitrocompostos
10.
Nature ; 609(7927): 616-621, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917926

RESUMO

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestrutura , Transporte Biológico/efeitos dos fármacos , Microscopia Crioeletrônica , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ftalimidas/química , Ftalimidas/farmacologia , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
11.
Biosensors (Basel) ; 12(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35448293

RESUMO

The toxicity of clothianidin to non-target organisms has gradually attracted world-wide attention. It is essential to develop reliable methods for the on-site detection of clothianidin residue. In this study, analogue-based heterologous ic-ELISAs were designed to rapidly screen desirable hybridomas, which could be used for the construction of recombinant antibodies (RAbs) against clothianidin. Based on the antibody variable region genes, two full-length IgG RAbs (1F7-RAb and 5C3-RAb) were produced by the mammalian cell expression system. The performance of the two RAbs was characterized and compared by heterologous ic-ELISAs and non-competitive surface plasmon resonance (SPR) assays. Using heterologous ic-ELISAs, the 1F7-RAb exhibited highly specific and sensitive recognition to clothianidin with an IC50 of 4.62 µg/L, whereas the 5C3-RAb could bind to both clothianidin and dinotefuran. The results of the non-competitive SPR assay further verified that the 1F7-RAb had a higher specificity and affinity to clothianidin than the 5C3-RAb. Finally, a gold immunochromatographic assay based on the novel antibody, 1F7-RAb, was developed for rapid detection of clothianidin with high sensitivity (visual detection limit of 2.5 µg/L), specificity, and good reproducibility, which can be used as an effective supervision tool for clothianidin residue in agricultural and environmental samples.


Assuntos
Imunoglobulina G , Tiazóis , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Guanidinas , Imunoensaio/métodos , Mamíferos , Neonicotinoides , Reprodutibilidade dos Testes , Tiazóis/análise
12.
Parasit Vectors ; 15(1): 43, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101118

RESUMO

BACKGROUND: The Asian tiger mosquito Aedes albopictus is a competent vector of several viral arboviruses including yellow fever, dengue fever, and chikungunya. Several vital mosquito behaviors (e.g., feeding, host-seeking, mating, and oviposition) are primarily dependent on the olfactory system for semiochemicals detection and discrimination. However, the limited number of studies hampers our understanding of the relationships between the Ae. albopictus olfactory system and the complex chemical world. METHODS: We performed RT-qPCR assay on antennae of Ae. albopictus mosquitoes of different sexes, ages and physiological states, and found odorant receptor 11 (AalbOr11) enriched in non-blood-fed female mosquitoes. Then, we examined the odorant preference with a panel of physiologically and behaviorally relevant odorants in Xenopus oocytes. RESULTS: The results indicated that AalbOr11 could be activated by ten aromatics, seven terpenes, six heterocyclics, and three alcohols. Furthermore, using post-RNA interference (RNAi) hand-in-cage assay, we found that reducing the transcript level of AalbOr11 affected the repellency activity mediated by (+)-fenchone at a lower concentration (0.01% v/v). CONCLUSIONS: Using in vitro functional characterization, we found that AalbOr11 was a broadly tuned receptor. Moreover, we found that AalbOr11 shared a conserved odorant reception profile with homologous Anopheles gambiae Or11. In addition, RNAi and bioassay suggested that AablOr11 might be one of the receptors mediating (+)-fenchone repellency activity. Our study attempted to link odor-induced behaviors to odorant reception and may lay the foundation for identifying active semiochemicals for monitoring or controlling mosquito populations.


Assuntos
Aedes/fisiologia , Mosquitos Vetores/fisiologia , Receptores Odorantes/fisiologia , Aedes/classificação , Aedes/genética , Animais , Canfanos/farmacologia , Feminino , Repelentes de Insetos/farmacologia , Masculino , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Norbornanos/farmacologia , Interferência de RNA/fisiologia , Receptores Odorantes/genética , Transcrição Gênica
13.
Chemosphere ; 296: 134004, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35181418

RESUMO

From January 2020 to December 2020, high-resolution data of volatile organic compound (VOC) concentrations were monitored by online instruments at a petroleum refinery. The measurement results showed that the external contaminants, meteorological conditions and photochemical reactions had a great influence on the VOC data measured in the petroleum refineries. Some significant differences were observed in the emission composition of different refineries, while propene (34.2%), propane (10.2%), n-butane (5.6%), i-pentane (5.0%) were the dominant species emitted from the refinery in this study. The correlations between compounds with similar atmospheric lifetimes were strong (R2 > 0.9), which indicated that the diagnostic ratios of these compounds could be used as indicators to identify the refinery emission source. Chronic health effects of non-carcinogenic risk results showed that acrolein had the highest non-carcinogenic risk and other compound-specific health risks may be of less concern in the refining area. Halogenates and aromatics accounted for 97.4% of the total carcinogenic risk values, while 1,2-dibromoethane, chloromethane, benzene, trichloromethane, 1,2-dichloroethane contributed approximately 80% of the total carcinogenic risk assessment values. This research has recorded valuable data about the VOC emission characteristics from the perspective of the high-resolution monitoring of the petroleum refinery. The results of this work will provide a reference to accurately quantify and identify the emission of petroleum refineries and further throw some light on effective VOC abatement strategies.


Assuntos
Poluentes Atmosféricos , Petróleo , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Carcinógenos , China , Monitoramento Ambiental/métodos , Petróleo/análise , Medição de Risco , Compostos Orgânicos Voláteis/análise
14.
J Hazard Mater ; 426: 127845, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865894

RESUMO

Pollution of N-methyl carbamate (NMC) pesticides is threatening the non-target organisms' survival. Thus, broad-specific antibodies and class-selective immunoassays are demanding for multiple NMCs determination. In this study, we employed a molecular docking-based virtual screening strategy to fast profile antibody spectrum, based on a designed chemical pool containing 17 compounds. A monoclonal antibody (mAb)-6G against carbofuran was used as the objective. The recombinant full-length IgG was successfully expressed to validate the antibody sequences for homology modeling. After docking, we manually categorized the antibody-chemical binding strength into three groups. Non-competitive surface plasmon resonance (SPR) demonstrated the mAb-6G affinitive binding toward five NMCs (carbofuran, isoprocarb, propoxur, carbaryl and carbosulfan), which were classified into strong and moderate binding categories. Antibody binding properties were confirmed again by ic-ELISA and lateral flow immunochromatographic strip. Subsequently, an ultrasensitive indirect competitive fluoromicrosphere-based immunoassay (ic-FMIA) was established with the IC50 (half-maximal inhibitory concentration) values of 0.08-3.37 ng/mL. This portable assay presented a 30-230-fold improved sensitivity than traditional ic-ELISA and was applied in European surface water analysis. Overall, our work provides an efficient platform integrating in-silico and experimental methodologies to accelerate the characterization of hapten-specific antibody binding properties and the development of high-sensitive immunoassays for multi-pollutants monitoring.


Assuntos
Praguicidas , Carbamatos , Computadores , Ensaio de Imunoadsorção Enzimática , Fluorimunoensaio , Imunoensaio , Simulação de Acoplamento Molecular
15.
Front Psychol ; 12: 693557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777088

RESUMO

The previous research has mostly proposed that ethical leadership contributed to less deviant behavior; however, recent studies found that this relationship might not always be significant. Therefore, a deeper and more nuanced investigation of how and when ethical leadership influences deviant behavior is highly warranted. In the present research, drawing on social learning theory as our overarching theoretical framework, we posited that high level of LMX differentiation will impede the effect of ethical leadership on employee deviant behavior, and thus, ethical leadership could reduce employees' deviant behavior in teams with lower LMX differentiation rather than high LMX differentiation. Furthermore, we proposed that the interactive effect of ethical leadership and LMX differentiation on employee deviant behavior is mediated by employee psychological empowerment. More specifically, ethical leadership is more likely to enhance employee psychological empowerment in teams with low LMX differentiation than in teams with high LMX differentiation, and enhanced psychological empowerment contributed to less deviant behavior. Through a multi-source field study via 379 paired samples from the southwest of China, we found support for all of our hypotheses. The results' contribution to research on organizational behavior, limitations in the study, and future directions for researchers are also discussed.

16.
Environ Sci Pollut Res Int ; 28(35): 49268-49277, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33931813

RESUMO

Neonicotinoid insecticides are widely used in agriculture for pest control, but the pesticide residues in environmental and agricultural products were a big threat to the health of non-target organisms. In this study, a new immunochromatographic strip test was established for the rapid detection of imidacloprid residue, a neonicotinoid insecticide, based on up-conversion nanoparticles (UCNPs) coupled with the monoclonal antibody against imidacloprid. Under optimal conditions, the half inhibitory concentration (IC50), detection limit, and the linear range of this strip were 8.37 ng/mL, 0.45 ng/mL, and 0.97-250 ng/mL. The strip test could be completed in 30 min. The average recoveries of imidacloprid spiked in water, Chinese cabbages, cucumber, honey, and tea samples were 70.1~101.8%, with coefficient of variations less than 18.9%. The strip was used to test real samples and verified by UPLC-MS/MS method with the good agreement (R2 was 0.9825), indicating this novel strip immunoassay is accurate and reliable.


Assuntos
Nanopartículas , Espectrometria de Massas em Tandem , Agricultura , Cromatografia de Afinidade , Cromatografia Líquida , Imunoensaio , Limite de Detecção , Neonicotinoides , Nitrocompostos
17.
J Appl Psychol ; 106(3): 317-329, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33871269

RESUMO

The current study aims to understand the detrimental effects of COVID-19 pandemic on employee job insecurity and its downstream outcomes, as well as how organizations could help alleviate such harmful effects. Drawing on event system theory and literature on job insecurity, we conceptualize COVID-19 as an event relevant to employees' work, and propose that event strength (i.e., novelty, disruption, and criticality) of COVID-19 influences employee job insecurity, which in turn affects employee work and non-work outcomes. We also identified important organization adaptive practices responding to COVID-19 based on a preliminary interview study, and examined its role in mitigating the undesired effects of COVID-19 event strength. Results from a two-wave lagged survey study indicated that employees' perceived COVID-19 event novelty and disruption (but not criticality) were positively related to their job insecurity, which in turn was positively related to their emotional exhaustion, organizational deviance, and saving behavior. Moreover, organization adaptive practices mitigated the effects of COVID-19 event novelty and criticality (but not disruption) on job insecurity. Theoretical and practical implications are discussed. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
COVID-19/psicologia , Emprego/psicologia , Satisfação no Emprego , Saúde Ocupacional , Gestão de Recursos Humanos/métodos , Estresse Psicológico/etiologia , Adulto , COVID-19/prevenção & controle , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Teoria Psicológica , Estresse Psicológico/prevenção & controle
18.
Pest Manag Sci ; 77(8): 3706-3712, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33798266

RESUMO

BACKGROUND: Pyrethrum from dry flowers of Chrysanthemum is a well-known botanical insecticide and repellent. Its insecticidal activity attributes to its six insecticidal esters, collectively known as pyrethrins. Pyrethrins and its synthetic analogs pyrethroids exert their toxic action by modifying the function of voltage-gated sodium channels. Aside from insecticidal activity, pyrethrum has also been used to repel mosquitoes for centuries. Today, pyrethrum continues to be used as an active ingredient in mosquito coils and other mosquito-repellent devices globally. However, the mechanism of pyrethrum repellency remains largely unknown. RESULTS: Here we report that pyrethrum vapor induced spatial (non-contact) repellency in Aedes albopictus, a major vector of dengue and West Nile viruses. Using electroantennogram (EAG) recordings from adult antennae, we found that pyrethrum elicited EAG response in a dose-dependent manner. We then isolated the six insecticidal esters, pyrethrins I and II, cinerins I and II, jasmolins I and II from pyrethrum extract and discovered that five of the six esters, except jasmolin I, all elicited EAG responses. Furthermore, pyrethrins I and II, cinerin II and jasmolin II induced repellency, whereas cinerin I and jasmolin I did not. CONCLUSION: Of the six pyrethrins, four of them, pyrethrins I and II, cinerin II and jasmolin II, activate olfactory-receptor neurons and elicit spatial repellency in Ae. albopictus. Our study provided a foundation for future structure-function studies of pyrethrins, their cognate olfactory receptors and efficacies of repellency and for the development of new and more effective mosquito repellents for controlling vector-borne human diseases. © 2021 Society of Chemical Industry.


Assuntos
Aedes , Chrysanthemum cinerariifolium , Repelentes de Insetos , Inseticidas , Piretrinas , Animais , Humanos , Mosquitos Vetores
19.
Food Chem ; 335: 127609, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739808

RESUMO

In this study, a fluorescence resonance energy transfer (FRET) immunoassay based on graphene oxide (GO) and up-converting nanoparticles (UCNPs) was established for rapid detection of imidacloprid, a commonly-used insecticide. Under 980 nm near-infrared light excitation, emission of UCNPs at 542 nm can be absorbed by the energy acceptor GO. The carboxyl-functionalized GO and UCNPs were coupled with competitive antigen and antibody against imidacloprid. After optimization, the FRET immunoassay showed a wide detection range of 0.08-50 ng/mL to imidacloprid, with cross-reaction toward other three neonicotinoids including imidaclothiz (74.4%), thiacloprid (36.9%) and clothianidin (31.9%). The average recoveries of spiked water, Chinese cabbage, cucumber, honey and tea samples were 76.8%-101.8%. The accuracy and reliability of the FRET immunoassay were verified by UPLC-MS/MS with a good correlation (R2 = 0.9816). In a summary, this study provides a sensitive and one-step method for monitoring imidacloprid residue in food and environmental samples within 1 h.


Assuntos
Grafite/química , Nanopartículas/química , Neonicotinoides/análise , Nitrocompostos/análise , Cromatografia Líquida , Transferência Ressonante de Energia de Fluorescência/métodos , Imunoensaio/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Tiazóis
20.
Front Chem ; 8: 586702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195085

RESUMO

In recent years, nanomaterials of different shape, size, and composition have been prepared and characterized, such as gold and silver nanoparticles, quantum dots, mesoporous silica nanoparticles, carbon nanomaterials, and hybrid nanocomposites. Because of their unique physical and chemical properties, these nanomaterials are increasingly used in point-of-care testing (POCT) to improve analytical performance and simplify detection process. They are used either as carriers for immobilizing biorecognition elements, or as labels for signal generation, transduction and amplification. In this commentary, we highlight recent POCT technologies that employ nanotechnology for the analysis of disease biomarkers, including small-molecule metabolites, enzymes, proteins, nucleic acids, cancer cells, and pathogens. Recent advances in lateral flow tests, printable electrochemical biosensors, and microfluidics-based devices are summarized. Existing challenges and future directions are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA