Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Neurosci Methods ; 408: 110181, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823594

RESUMO

BACKGROUND: Ex vivo cultures of retinal explants are appropriate models for translational research. However, one of the difficult problems of retinal explants ex vivo culture is that their nutrient supply needs cannot be constantly met. NEW METHOD: This study evaluated the effect of perfused culture on the survival of retinal explants, addressing the challenge of insufficient nutrition in static culture. Furthermore, exosomes secreted from retinal organoids (RO-Exos) were stained with PKH26 to track their uptake in retinal explants to mimic the efficacy of exosomal drugs in vivo. RESULTS: We found that the retinal explants cultured with perfusion exhibited significantly higher viability, increased NeuN+ cells, and reduced apoptosis compared to the static culture group at Days Ex Vivo (DEV) 4, 7, and 14. The perfusion-cultured retinal explants exhibited reduced mRNA markers for gliosis and microglial activation, along with lower expression of GFAP and Iba1, as revealed by immunostaining. Additionally, RNA-sequencing analysis showed that perfusion culture mainly upregulated genes associated with visual perception and photoreceptor cell maintenance while downregulating the immune system process and immune response. RO-Exos promoted the uptake of PKH26-labelled exosomes and the growth of retinal explants in perfusion culture. COMPARISON WITH EXISTING METHODS: Our perfusion culture system can provide a continuous supply of culture medium to achieve steady-state equilibrium in retinal explant culture. Compared to traditional static culture, it better preserves the vitality, provides better neuroprotection, and reduces glial activation. CONCLUSIONS: This study provides a promising ex vivo model for further studies on degenerative retinal diseases and drug screening.


Assuntos
Exossomos , Organoides , Retina , Animais , Organoides/metabolismo , Retina/citologia , Retina/metabolismo , Exossomos/metabolismo , Perfusão/métodos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Tecidos/métodos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos
2.
J Biol Eng ; 18(1): 7, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229139

RESUMO

BACKGROUND: Retinal pigment epithelium (RPE) cell therapy is a promising way to treat many retinal diseases. However, obtaining transplantable RPE cells is time-consuming and less effective. This study aimed to develop novel strategies for generating engineered RPE patches with physiological characteristics. RESULTS: Our findings revealed that RPE cells derived from human induced pluripotent stem cells (hiPSCs) successfully self-assembled into spheroids. The RPE spheroids treated with Y27632 and Repsox had increased expression of epithelial markers and RPE-specific genes, along with improved cell viability and barrier function. Transcriptome analysis indicated enhanced cell adhesion and extracellular matrix (ECM) organization in RPE spheroids. These RPE spheroids could be seeded and bioprinted on collagen vitrigel (CV) membranes to construct engineered RPE sheets. Circular RPE patches, obtained by trephining a specific section of the RPE sheet, exhibited abundant microvilli and pigment particles, as well as reduced proliferative capacity and enhanced maturation. CONCLUSIONS: Our study suggests that the supplementation of small molecules and 3D spheroid culture, as well as the bioprinting technique, can be effective methods to promote RPE cultivation and construct engineered RPE sheets, which may support future clinical RPE cell therapy and the development of RPE models for research applications.

3.
FEBS Open Bio ; 13(10): 1895-1909, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583315

RESUMO

Fibroblast growth factor (FGF) signaling plays a crucial role in lung development and repair. Fibroblast growth factor 2 (FGF2) can inhibit fibrotic gene expression and suppress the differentiation of pulmonary fibroblasts (PFs) into myofibroblasts in vitro, suggesting that FGF2 is a potential target for inhibiting pulmonary fibrosis. To gain deeper insights into the molecular mechanism underlying FGF2-mediated regulation of PFs, we performed mRNA sequencing analysis to systematically and globally uncover the regulated genes and biological functions of FGF2 in PFs. Gene Ontology analysis revealed that the differentially expressed genes regulated by FGF2 were enriched in multiple cellular functions including extracellular matrix (ECM) organization, cytoskeleton formation, ß-catenin-independent Wnt signaling pathway, supramolecular fiber organization, epithelial cell proliferation, and cell adhesion. Gene Set Enrichment Analysis and cellular experiments confirmed that FGF2 can suppress ECM and actin filament organization and increase PFs proliferation. Taken together, these findings indicate that FGF2 acts as an upstream regulator of the inhibition of PFs activation and may play a regulatory role in pulmonary fibrosis.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Fibrose Pulmonar , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose Pulmonar/genética , Pulmão/patologia , Fibroblastos/metabolismo , Via de Sinalização Wnt
4.
PeerJ ; 11: e15736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483983

RESUMO

After myocardial injury, cardiac fibroblasts (CFs) differentiate into myofibroblasts, which express and secrete extracellular matrix (ECM) components for myocardial repair, but also promote myocardial fibrosis. Recombinant fibroblast growth factor 2 (FGF2) protein drug with low molecular weight can promote cell survival and angiogenesis, and it was found that FGF2 could inhibit the activation of CFs, suggesting FGF2 has great potential in myocardial repair. However, the regulatory role of FGF2 on CFs has not been fully elucidated. Here, we found that recombinant FGF2 significantly suppressed the expression of alpha smooth muscle actin (α-SMA) in CFs. Through RNA sequencing, we analyzed mRNA expression in CFs and the differently expressed genes regulated by FGF2, including 430 up-regulated genes and 391 down-regulated genes. Gene ontology analysis revealed that the differentially expressed genes were strongly enriched in multiple biological functions, including ECM organization, cell adhesion, actin filament organization and axon guidance. The results of gene set enrichment analysis (GSEA) show that ECM organization and actin filament organization are down-regulated, while axon guidance is up-regulated. Further cellular experiments indicate that the regulatory functions of FGF2 are consistent with the findings of the gene enrichment analysis. This study provides valuable insights into the potential therapeutic role of FGF2 in treating cardiac fibrosis and establishes a foundation for further research to uncover the underlying mechanisms of CFs gene expression regulated by FGF2.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Fibroblastos , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Fibroblastos/metabolismo , Células Cultivadas , Fibrose , RNA Mensageiro/genética , Expressão Gênica
5.
Stem Cell Res ; 68: 103055, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863132

RESUMO

We generated an induced pluripotent stem (iPS) cell line by reprogramming peripheral blood mononuclear cells of a patient with Usher syndrome type II carrying USH2A gene mutation (c.8559-2A > G). The iPS cell line with confirmed patient-specific point mutation exhibited typical iPS cell characteristics and maintained a normal karyotype. It can be used as 2D and 3D models to investigate the underlying pathogenic mechanism and lay a solid foundation for future personalized therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes de Usher , Humanos , Síndromes de Usher/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação/genética , Linhagem Celular , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
6.
ACS Biomater Sci Eng ; 9(2): 856-868, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36668685

RESUMO

Substrate stiffness has been indicated as an important factor to control stem cell fate, including proliferation and differentiation. To optimize the stiffness for the differentiation process from h-iPSCs (human induced pluripotent stem cells) into h-iCSCs (human corneal stromal cells derived from h-iPSCs) and the phenotypic maintenance of h-iCSCs in vitro, h-iPSCs were cultured on matrigel-coated tissue culture plate (TCP) (106 kPa), matrigel-coated polydimethylsiloxane (PDMS) 184 (1250 kPa), and matrigel-coated PDMS 527 (4 kPa) before they were differentiated to h-iCSCs. Immunofluorescence staining, quantitative real-time polymerase chain reaction (RT-qPCR), and western blot demonstrated that the stiffer substrate TCP promoted the h-iCSCs' differentiation from h-iPSCs. On the contrary, softer PDMS 527 was more effective to maintain the phenotype of h-iCSCs cultured in vitro. Finally, we cultured h-iCSCs on PDMS 527 until P3 and seeded them on a biomimetic collagen membrane to form the single-layer and multiple-layer bioengineered corneal stroma with high transparency properties and cell survival rate. In conclusion, the study is helpful for differentiating h-iPSCs to h-iCSCs and corneal tissue engineering by manipulating stiffness mechanobiology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Fenótipo , Diferenciação Celular
7.
Artigo em Inglês | MEDLINE | ID: mdl-36360805

RESUMO

Neonatal retinal hemorrhage (RH) is the most common ocular fundus disease among newborns. Early detection and timely intervention are vital for reducing the risk of visual impairment caused by RH. However, little is known about the prevalence, characteristics, and risk factors of RH in southern China. Full-term infants born in Qingyuan City during the first 10 days of each month in 2021 were included in this study. All infants underwent RetCam III retinal examinations. Detailed information on retinal hemorrhage, including involved eyes, bleeding severity, and affected area (extrafoveal macula, fovea, or optic disc), and clinical information on the neonates and their mothers was collected. The results showed that among the 1072 eligible neonates, 266 (24.8%) had neonatal retinal hemorrhage. Consistent bilateral retinal hemorrhage severity was observed in 83.2% of the cases. The prevalence of optic disc involved RH, extrafoveal macular involved RH and foveal involved RH were 23.7%, 81.2% and 2.63%, respectively. Multivariate logistic regression analysis showed that lower birth weight (OR, 0.63; 95% CI, 0.40-0.99; p < 0.05) and vaginal delivery (OR, 20.6; 95% CI, 9.10-46.5; p < 0.001) were risk factors of neonatal RH. The area under the ROC curve of vaginal delivery, combined with birth weight, as predictors of neonatal RH was 0.73, with 85.3% sensitivity and 23.9% specificity. The birth weight cutoff was 3460 g. Our results suggested that neonatal RH is common in full-term neonates in southern China. It usually has the same severity in both eyes and mostly involves the extrafoveal macular region. Vaginal delivery and low birth weight are risk factors for neonatal RH.


Assuntos
Doenças do Recém-Nascido , Hemorragia Retiniana , Lactente , Feminino , Recém-Nascido , Humanos , Hemorragia Retiniana/diagnóstico , Hemorragia Retiniana/epidemiologia , Hemorragia Retiniana/etiologia , Peso ao Nascer , Idade Gestacional , Prevalência , Fatores de Risco
8.
Front Bioeng Biotechnol ; 10: 939774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185441

RESUMO

Retinitis pigmentosa (RP) is a leading cause of vision impairment and blindness worldwide, with limited medical treatment options. USH2A mutations are one of the most common causes of non-syndromic RP. In this study, we developed retinal organoids (ROs) and retinal pigment epithelium (RPE) cells from induced pluripotent stem cells (iPSCs) of RP patient to establish a sustainable in vitro RP disease model. RT-qPCR, western blot, and immunofluorescent staining assessments showed that USH2A mutations induced apoptosis of iPSCs and ROs, and deficiency of the extracellular matrix (ECM) components. Transcriptomics and proteomics findings suggested that abnormal ECM-receptor interactions could result in apoptosis of ROs with USH2A mutations via the PI3K-Akt pathway. To optimize the culture conditions of ROs, we fabricated a microfluidic chip to co-culture the ROs with RPE cells. Our results showed that this perfusion system could efficiently improve the survival rate of ROs. Further, ECM components such as laminin and collagen IV of ROs in the RP group were upregulated compared with those maintained in static culture. These findings illustrate the potential of microfluidic chip combined with ROs technology in disease modelling for RP.

10.
Acta Biomater ; 146: 159-176, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35562005

RESUMO

Corneal nerve wounding often causes abnormalities in the cornea and even blindness in severe cases. In this study, we construct a dorsal root ganglion-corneal stromal cell (DRG-CSC, DS) co-culture 3D model to explore the mechanism of corneal nerve regeneration. Firstly, this model consists of DRG collagen grafts sandwiched by orthogonally stacked and orderly arranged CSC-laden plastic compressed collagen. Nerve bundles extend into the entire corneal stroma within 14 days, and they also have orthogonal patterns. This nerve prevents CSCs from apoptosis in the serum withdrawal medium. The conditioned medium (CM) for CSCs in collagen scaffolds contains NT-3, IL-6, and other factors. Among them, NT-3 notably promotes the activation of ERK-CREB in the DRG, leading to the growth of nerve bundles, and IL-6 induces the upregulation of anti-apoptotic genes. Then, LM22B-10, an activator of the NT-3 receptor TrkB/TrkC, can also activate ERK-CREB to enhance nerve growth. After administering LM22B-10 eye drops to regular and diabetic mice with corneal wounding, LM22B-10 significantly improves the healing speed of the corneal epithelium, corneal sensitivity, and corneal nerve density. Overall, the DS co-culture model provides a promising platform and tools for the exploration of corneal physiological and pathological mechanisms, as well as the verification of drug effects in vitro. Meanwhile, we confirm that LM22B-10, as a non-peptide small molecule, has future potential in nerve wound repair. STATEMENT OF SIGNIFICANCE: The cornea accounts for most of the refractive power of the eye. Corneal nerves play an important role in maintaining corneal homeostasis. Once the corneal nerves are damaged, the corneal epithelium and stroma develop lesions. However, the mechanism of the interaction between corneal nerves and corneal cells is still not fully understood. Here, we construct a corneal stroma-nerve co-culture in vitro model and reveal that NT-3 expressed by stromal cells promotes nerve growth by activating the ERK-CREB pathway in nerves. LM22B-10, an activator of NT-3 receptors, can also induce nerve growth in vitro. Moreover, it is used as eye drops to enhance corneal epithelial wound healing, corneal nerve sensitivity and density of nerve plexus in corneal nerve wounding model in vivo.


Assuntos
Lesões da Córnea , Diabetes Mellitus Experimental , Animais , Técnicas de Cocultura , Colágeno/metabolismo , Córnea/patologia , Lesões da Córnea/metabolismo , Diabetes Mellitus Experimental/patologia , Interleucina-6/metabolismo , Camundongos , Regeneração Nervosa , Soluções Oftálmicas/farmacologia
11.
Stem Cell Res ; 60: 102699, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152177

RESUMO

USH type 2 (USH2) is an autosomal recessive disorder that is characterized by inherited retinopathies and sensorineural hearing loss. USH type 2 (USH2) is frequently caused by USH2A mutations, which account for 74-90% of USH2 cases. We used peripheral blood mononuclear cells (PBMCs) from a USH2 patient with a USH2A gene mutation (c.8559-2A > G) to create an induced pluripotent stem (iPS) cell line. The patient-specific iPS cell line with the specific point mutation exhibited typical iPS cell characteristics, and it can be used as a model to investigate the pathogenic mechanisms underlying USH2A-associated retinal degeneration and sensorineural hearing loss.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes de Usher , Linhagem Celular , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação/genética , Síndromes de Usher/genética
12.
Front Bioeng Biotechnol ; 9: 709488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568299

RESUMO

Suspended spheroid culture using ultralow attachment plates (ULAPs) is reported to effect corneal fibroblast reprogramming. Polydimethylsiloxane (PDMS), with hydrophobic and soft substrate properties, facilitates adherent spheroid formation that promotes cellular physical reprogramming into stem-like cells without using transcription factors. However, it is still unknown whether the biophysical properties of PDMS have the same effect on adult human corneal keratocyte reprogramming. Here, PDMS and essential 8 (E8) medium were utilized to culture keratocyte spheroids and fibroblast spheroids, and the reprogramming results were compared. We provide insights into the probable mechanisms of the PDMS effect on spheroids. qPCR analysis showed that the expression of some stem cell marker genes (OCT4, NANOG, SOX2, KLF4, CMYC, ABCG2 and PAX6) was significantly greater in keratocyte spheroids than in fibroblast spheroids. The endogenous level of stemness transcription factors (OCT4, NANOG, SOX2, KLF4 and CMYC) was higher in keratocytes than in fibroblasts. Immunofluorescence staining revealed Klf4, Nanog, Sox2, ABCG2 and Pax6 were positively stained in adherent 3D spheroids but weakly or negatively stained in adherent 2D cells. Furthermore, OCT4, NANOG, SOX2, KLF4, HNK1, ABCG2 and PAX6 gene expression was significantly higher in adherent 3D spheroids than in adherent 2D cells. Meanwhile, SOX2, ABCG2 and PAX6 were more upregulated in adherent 3D spheroids than in suspended 3D spheroids. The RNA-seq analysis suggested that regulation of the actin cytoskeleton, TGFß/BMP and HIF-1 signaling pathways induced changes in mechanotransduction, the mesenchymal-to-epithelial transition and hypoxia, which might be responsible for the effect of PDMS on facilitating reprogramming. In conclusion, compared to corneal fibroblasts, keratocytes were more susceptible to reprogramming due to higher levels of endogenous stemness transcription factors. Spheroid culture of keratocytes using PDMS had a positive impact on promoting the expression of some stem cell markers. PDMS, as a substrate to form spheroids, was better able to promote reprogramming than ULAPs. These results indicated that the physiological cells and culture conditions herein enhance reprogramming. Therefore, adherent spheroid culture of keratocytes using PDMS is a promising strategy to more safely promote reprogramming, suggesting its potential application for developing clinical implants in tissue engineering and regenerative medicine.

13.
Neural Regen Res ; 16(9): 1856-1864, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33510093

RESUMO

In vertebrates, most somatosensory pathways begin with the activation of dorsal root ganglion (DRG) neurons. The development of an appropriate DRG culture method is a prerequisite for establishing in vitro peripheral nerve disease models and for screening therapeutic drugs. In this study, we compared the changes in morphology, molecular biology, and transcriptomics of chicken embryo DRG cultured on tissue culture plates (T-DRG) versus three-dimensional collagen hydrogels (C-DRG). Our results showed that after 7 days of culture, the transcriptomics of T-DRG and C-DRG were quite different. The upregulated genes in C-DRG were mainly related to neurogenesis, axon guidance, and synaptic plasticity, whereas the downregulated genes in C-DRG were mainly related to cell proliferation and cell division. In addition, the genes related to cycles/pathways such as the synaptic vesicle cycle, cyclic adenosine monophosphate signaling pathway, and calcium signaling pathway were activated, while those related to cell-cycle pathways were downregulated. Furthermore, neurogenesis- and myelination-related genes were highly expressed in C-DRG, while epithelial-mesenchymal transition-, apoptosis-, and cell division-related genes were suppressed. Morphological results indicated that the numbers of branches, junctions, and end-point voxels per C-DRG were significantly greater than those per T-DRG. Furthermore, cells were scattered in T-DRG and more concentrated in C-DRG, with a higher ratio of 5-ethynyl-2'-deoxyuridine (EdU)-positive cells in T-DRG compared with C-DRG. C-DRG also had higher S100 calcium-binding protein B (S100B) and lower α-smooth muscle actin (α-SMA) expression than T-DRG, and contained fewer terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells after 48 hours of serum starvation. After cryopreservation, C-DRG maintained more intact morphological characteristics, and had higher viability and less TUNEL-positive cells than T-DRG. Furthermore, newly formed nerve bundles were able to grow along the existing Schwann cells in C-DRG. These results suggest that C-DRG may be a promising in vitro culture model, with better nerve growth and anti-apoptotic ability, quiescent Schwann cells, and higher viability. Results from this study provide a reference for the construction, storage, and transportation of tissue-engineered nerves. The study was approved by the Ethics Committee of Aier School of Ophthalmology, Central South University, China (approval No. 2020-IRB16), on March 15, 2020.

14.
Sci Transl Med ; 12(562)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967971

RESUMO

Stem cell therapy holds promises for treating corneal scarring. Here, we use multilineage-differentiating stress-enduring (Muse) cells to study their differentiation and therapeutic potential for treating corneal injury. Muse cells were isolated from lipoaspirate, which presented biphenotype properties of both pluripotent stem cells and some mesenchymal stem cells. Muse cells expanded by about 100-fold from the initial seeding cell number to Muse spheroids with the maintenance of the Muse cell phenotype and high cell viability at 33 days by static spheroid culture. We revealed that Muse spheroids were activated by the dynamic rotary cell culture system (RCCS), as characterized by increased stemness, improved activity, and enhanced adherence. Gene and protein expression of the pluripotent markers OCT3/4, SOX2, and NANOG and of the proliferation marker KI67 in Muse spheroids cultured under RCCS were higher than those in the static group. These activated Muse spheroids enabled ready differentiation into corneal stromal cells (CSCs) expressing characteristic marker genes and proteins. Furthermore, implantation of Muse cells-differentiated CSCs (Muse-CSCs) laden assembled with two orthogonally stacked stretched compressed collagen (cell-SCC) in mouse and tree shrew wounded corneas prevented the formation of corneal scarring, increased corneal re-epithelialization and nerve regrowth, and reduced the severity of corneal inflammation and neovascularization. cell-SCC retained the capacity to suppress corneal scarring after long-distance cryopreserved transport. Thus, Muse cell therapy is a promising avenue for developing therapeutics for treating corneal scarring.


Assuntos
Lesões da Córnea , Células-Tronco Pluripotentes , Alprostadil , Animais , Diferenciação Celular , Cicatriz , Lesões da Córnea/terapia , Camundongos , Tupaiidae
15.
Stem Cell Res Ther ; 11(1): 98, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131893

RESUMO

BACKGROUND: Retinitis pigmentosa (RP) is an inherited retinal disease characterized by progressive loss of photoreceptor cells. This study aim at exploring the effect of retinal pigment epithelium (RPE) derived from human-induced pluripotent stem cell (hiPSC-RPE) on the retina of retinal degeneration 10 (rd10) mice, which are characterized with progressive photoreceptor death. METHODS: We generated RPE from hiPSCs by sequential supplementation with retinal-inducing factors and RPE specification signaling factors. The three-dimensional (3D) spheroid culture method was used to obtain optimal injectable hiPSC-RPE cells. Subretinal space transplantation was conducted to deliver hiPSC-RPE cells into the retina of rd10 mice. Neurotrophic factor secretion from transplanted hiPSC-RPE cells was detected by enzyme-linked immunosorbent assay (ELISA). Immunostaining, Western blotting, electroretinography (ERG), and visual behavior testing were performed to determine the effects of hiPSC-RPE on the retinal visual function in rd10 mice. RESULTS: Our data demonstrated that hiPSC-RPE cells exhibited classic RPE properties and phenotype after the sequential RPE induction from hiPSCs. hiPSC-RPE cells co-cultured with mouse retinal explants or retinal ganglion cells 5 (RGC5) exhibited decreased apoptosis. The viability and functional properties of hiPSC-RPE cells were enhanced by 3D spheroid culture. Transplanted hiPSC-derived RPE cells were identified by immunostaining with human nuclear antigen staining in the retina of rd10 14 days after subretinal space injection. The pigment epithelium-derived factor level was increased significantly. The expression of CD68, microglial activation marker, reduced after transplantation. The light avoidance behavior and ERG visual function in rd10 mice improved by the transplantation of hiPSC-RPE cells. CONCLUSION: Our findings suggest that injectable hiPSC-RPE cells after 3D spheroid culture can rescue the structure and function of photoreceptors by sub-retinal transplantation, which lay the foundation for future clinical cell therapy to treat RP and other retinal degeneration diseases.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Células Epiteliais , Humanos , Camundongos , Retina , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina , Retinose Pigmentar/genética , Retinose Pigmentar/terapia
16.
Invest Ophthalmol Vis Sci ; 61(3): 6, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32150248

RESUMO

Purpose: We performed a bioinformatic transcriptome analysis to determine the alteration of gene expression between the native retina and retinal organoids in both mice and humans. Methods: The datasets of mouse native retina (GSE101986), mouse retinal organoids (GSE102794), human native retina (GSE104827), and human retinal organoids (GSE119320) were obtained from Gene Expression Omnibus. After normalization, a principal component analysis was performed to categorize the samples. The genes were clustered to classify them. A functional analysis was performed using the bioinformatics tool Gene ontology enrichment to analyze the biological processes of selected genes and cellular components. Results: The development of retinal organoids is slower than that in the native retina. In the early stage, cell proliferation predominates. Subsequently, neural differentiation is dominant. In the later stage, the dominant differentiated cells are photoreceptors. Additionally, the fatty acid metabolic process and mitochondria-related genes are upregulated over time, and the glycogen catabolic process and activin receptors are gradually downregulated in human retinal organoids. However, these trends are opposite in mouse retinal organoids. There are two peaks in mitochondria-related genes, one in the early development period and another during the photoreceptor development period. It takes about five times longer for human retinal development to achieve similar levels of mouse retinal development. Conclusions: Our study reveals the similarities and differences in the developmental features of retinal organoids as well as the corresponding relationship between mouse and human retinal development.


Assuntos
Organoides/metabolismo , Retina/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados Genéticas , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/fisiologia , Glicogênio/metabolismo , Humanos , Mitocôndrias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Retina/citologia , Especificidade da Espécie , Transcriptoma , Regulação para Cima/fisiologia
17.
Stem Cell Res ; 43: 101718, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32050117

RESUMO

X-linked retinoschisis (XLRS) is a one of most common retinal genetic diseases of juvenile progressive vitreoretinal degeneration in males, which caused by the mutation of RS1 gene. In this study, an induced pluripotent stem cell (iPSC) line was generated from human peripheral blood mononuclear cells (PBMC) of a 13-year-old male patient with X-linked juvenile retinoschisis carrying a novel mutation in RS1 gene. The iPSCs exhibited iPSC morphology, expression of the pluripotency markers and in vitro differentiation potential, and the CSUASOi005-A iPSC line retained the original mutation (c.527T > A) of RS1 with a normal karyotype.


Assuntos
Proteínas do Olho/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Retinosquise/genética , Adolescente , Humanos , Masculino , Mutação
18.
Stem Cell Res ; 41: 101598, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669782

RESUMO

We report the human induced pluripotent stem cell line (iPSC) CSUASOi002-A, generated from urine-derived cells (UCs) from a 51-year-old female patient carrying compound heterozygous mutations (c.62_63delTinsGA and c.C892T) in the carbohydrate sulfotransferase 6 gene (CHST6). This patient was from a Chinese family of three siblings with macular corneal dystrophy (MCD). Patient UCs were reprogrammed by electroporation using the episomal plasmids (OCT4, SOX2, KLF4, l-MYC, LIN28 and shP53). The human MCD-UiPS cell line CSUASOi002-A retained the disease-associated genotype, while expressed pluripotent stem cell markers and could be differentiated into cells of all three germ layers.


Assuntos
Técnicas de Reprogramação Celular , Distrofias Hereditárias da Córnea , Heterozigoto , Mutação , Sulfotransferases , Urina , Linhagem Celular , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/patologia , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Pessoa de Meia-Idade , Sulfotransferases/genética , Sulfotransferases/metabolismo , Carboidrato Sulfotransferases
19.
Front Cell Neurosci ; 13: 361, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481876

RESUMO

Retinitis pigmentosa (RP) represents a group of inherited retinopathies with early-onset nyctalopia followed by progressive photoreceptor degeneration causing irreversible vision loss. Mutations in USH2A are the most common cause of non-syndromic RP. Here, we reprogrammed induced pluripotent stem cells (iPSCs) from a RP patient with a mutation in USH2A (c.8559-2A > G/c.9127_9129delTCC). Then, multilayer retinal organoids including neural retina (NR) and retinal pigment epithelium (RPE) were generated by three-step "induction-reversal culture." The early retinal organoids derived from the RP patient with the USH2A mutation exhibited significant defects in terms of morphology, immunofluorescence staining and transcriptional profiling. To the best of our knowledge, the pathogenic mutation (c.9127_9129delTCC) in USH2A has not been reported previously among RP patients. Notably, the expression of laminin in the USH2A mutation organoids was significantly lower than in the iPSCs derived from healthy, age- and sex-matched controls during the retinal organogenesis. We also observed that abnormal retinal neuroepithelium differentiation and polarization caused defective retinal progenitor cell development and retinal layer formation, disordered organization of NRs in the presence of the USH2A mutation. Furthermore, the USH2A mutation bearing RPE cells presented abnormal morphology, lacking pigmented foci and showing an apoptotic trend and reduced expression of specific makers, such as MITF, PEDF, and RPE65. In addition, the USH2A mutation organoids had lower expression of cilium-associated (especially CFAP43, PIFO) and dopaminergic synapse-related genes (including DLGAP1, GRIK1, SLC17A7, and SLC17A8), while there was higher expression of neuron apoptotic process-related genes (especially HIF1A, ADARB1, and CASP3). This study may provide essential assistance in the molecular diagnosis and screening of RP. This work recapitulates the pathogenesis of USH2A using patient-specific organoids and demonstrated that alterations in USH2A function due to mutations may lead to cellular and molecular abnormalities.

20.
Stem Cell Res ; 38: 101466, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31141763

RESUMO

X-linked juvenile retinoschisis (XLRS) is one of the most severely affected genetic causes of irreversible retinal degeneration diseases in young males, especially school-age boys. Here, we generated induced pluripotent stem cells (iPSCs) from a Chinese 11-year-old male with clinically diagnosed XLRS. Urine sample was collected with appropriate cooperation, then isolated cells were expanded for subsequent reprogramming procedure using integration-free Sendai virus. The newly derived CSUASOi001-A iPS cell line harboring the c.304C > T mutation in the RS1 gene (p.R102W) provides a useful resource to investigate pathogenic mechanisms in XLRS.


Assuntos
Proteínas do Olho , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação de Sentido Incorreto , Retinosquise , Urina , Substituição de Aminoácidos , Povo Asiático , Linhagem Celular , Criança , China , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Retinosquise/genética , Retinosquise/metabolismo , Retinosquise/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA