Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Sci Technol ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795035

RESUMO

The global practice of reusing sewage sludge in agriculture and its landfill disposal reintroduces environmental contaminants, posing risks to human and ecological health. This study screened sewage sludge from 30 Chinese cities for androgen receptor (AR) disruptors, utilizing a disruptor list from the Toxicology in the 21st Century program (Tox21), and identified 25 agonists and 33 antagonists across diverse use categories. Predominantly, natural products 5α-dihydrotestosterone and thymidine emerged as agonists, whereas the industrial intermediate caprolactam was the principal antagonist. In-house bioassays for identified disruptors displayed good alignment with Tox21 potency data, validating employing Tox21 toxicity data for theoretical toxicity estimations. Potency calculations revealed 5α-dihydrotestosterone and two pharmaceuticals (17ß-trenbolone and testosterone isocaproate) as the most potent AR agonists and three dyes (rhodamine 6G, Victoria blue BO, and gentian violet) as antagonists. Theoretical effect contribution evaluations prioritized 5α-dihydrotestosterone and testosterone isocaproate as high-risk AR agonists and caprolactam, rhodamine 6G, and 8-hydroxyquinoline (as a biocide and a preservative) as key antagonists. Notably, 16 agonists and 20 antagonists were newly reported in the sludge, many exhibiting significant detection frequencies, concentrations, and/or toxicities, demanding future scrutiny. Our study presents an efficient strategy for estimating environmental sample toxicity and identifying key toxicants, thereby supporting the development of appropriate sludge management strategies.

2.
Water Res ; 256: 121652, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657313

RESUMO

The safety of municipal sewage sludge has raised great concerns because of the accumulation of large-scale endocrine disrupting chemicals in the sludge during wastewater treatment. The presence of contaminants in sludge can cause secondary pollution owing to inappropriate disposal mechanisms, posing potential risks to the environment and human health. Effect-directed analysis (EDA), involving an androgen receptor (AR) reporter gene bioassay, fractionation, and suspect and nontarget chemical analysis, were applied to identify causal AR agonists in sludge; 20 of the 30 sludge extracts exhibited significant androgenic activity. Among these, the extracts from Yinchuan, Kunming, and Shijiazhuang, which held the most polluted AR agonistic activities were prepared for extensive EDA, with the dihydrotestosterone (DHT)-equivalency of 2.5 - 4.5 ng DHT/g of sludge. Seven androgens, namely boldione, androstenedione, testosterone, megestrol, progesterone, and testosterone isocaproate, were identified in these strongest sludges together, along with testosterone cypionate, first reported in sludge media. These identified androgens together accounted for 55 %, 87 %, and 52 % of the effects on the sludge from Yinchuan, Shijiazhuang, and Kunming, respectively. This study elucidates the causative androgenic compounds in sewage sludge and provides a valuable reference for monitoring and managing androgens in wastewater treatment.


Assuntos
Androgênios , Esgotos , Poluentes Químicos da Água , Esgotos/química , China , Poluentes Químicos da Água/análise , Disruptores Endócrinos , Receptores Androgênicos/metabolismo
3.
Environ Sci Technol ; 57(46): 18038-18047, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37186679

RESUMO

Despite the fact that coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been disrupting human life and health worldwide since the outbreak in late 2019, the impact of exogenous substance exposure on the viral infection remains unclear. It is well-known that, during viral infection, organism receptors play a significant role in mediating the entry of viruses to enter host cells. A major receptor of SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2). This study proposes a deep learning model based on the graph convolutional network (GCN) that enables, for the first time, the prediction of exogenous substances that affect the transcriptional expression of the ACE2 gene. It outperforms other machine learning models, achieving an area under receiver operating characteristic curve (AUROC) of 0.712 and 0.703 on the validation and internal test set, respectively. In addition, quantitative polymerase chain reaction (qPCR) experiments provided additional supporting evidence for indoor air pollutants identified by the GCN model. More broadly, the proposed methodology can be applied to predict the effect of environmental chemicals on the gene transcription of other virus receptors as well. In contrast to typical deep learning models that are of black box nature, we further highlight the interpretability of the proposed GCN model and how it facilitates deeper understanding of gene change at the structural level.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Transcrição Gênica
4.
Environ Sci Technol ; 57(14): 5739-5750, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989422

RESUMO

We have been effectively protected by disposable propylene face masks during the COVID-19 pandemic; however, they may pose health risks due to the release of fine particles and chemicals. We measured micro/nanoparticles and organic chemicals in disposable medical masks, surgical masks, and (K)N95 respirators. In the breathing-simulation experiment, no notable differences were found in the total number of particles among mask types or between breathing intensities. However, when considering subranges, <2.5 µm particles accounted for ∼90% of the total number of micro/nanoparticles. GC-HRMS-based suspect screening tentatively revealed 79 (semi)volatile organic compounds in masks, with 18 being detected in ≥80% of samples and 44 in ≤20% of samples. Three synthetic phenolic antioxidants were quantified, and AO168 reached a median concentration of 2968 ng/g. By screening particles collected from bulk mask fabrics, we detected 18 chemicals, including four commonly detected in masks, suggesting chemical partition between the particles and the fabric fibers and chemical exposure via particle inhalation. These particles and chemicals are believed to originate from raw materials, intentionally and nonintentionally added substances in mask production, and their transformation products. This study highlights the need to study the long-term health risks associated with mask wearing and raises concerns over mask quality control.


Assuntos
COVID-19 , Nanopartículas , Humanos , COVID-19/prevenção & controle , Máscaras , Polipropilenos , Pandemias/prevenção & controle
5.
Environ Pollut ; 308: 119659, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738515

RESUMO

Exposure to electronic and electrical waste (e-waste) has been related to a few adverse health effects. In this study, sediment samples from an e-waste recycling town in China were collected, and aryl hydrocarbon receptor (AhR) agonists in the samples were identified using an effect-directed analysis (EDA) strategy. The CBG2.8D cell line reporter gene bioassay was used as a toxicity test, while suspect screening against chemical databases was performed for potential AhR agonist identification where both gas chromatography- and liquid chromatography-high resolution mass spectrometry analyses were run. When the original sample extract showed high AhR-mediated activity, sample fractionation was performed, and fractions exhibiting high bioactivity were chemically analyzed again to reveal the corresponding AhR agonists. In total, 23 AhR agonists were identified, including 14 commonly known ones and 9 new ones. Benzo [k]fluoranthene and 6-nitrochrysene were the dominant AhR agonists, covering 16-71% and 2.7-12%, respectively, of the AhR activation effects measured in the parent extracts. The newly identified AhR-active chemicals combined explained 0.13-0.20% of the parent extracts' effects, with 7,12-dimethylbenz [a]anthracene and 8,9,11-trimethylbenz [a]anthracene being the major contributors. A diagnostic isomer ratio analysis of polycyclic aromatic hydrocarbons suggested that the major source of AhR agonists identified in these e-waste related sediment samples were probably petroleum product combustion and biomass combustion. In the future, for a more comprehensive AhR agonist investigation, in-house chemical synthesis and purification, and, when necessary, a secondary sample fractionation, would be beneficial.


Assuntos
Resíduo Eletrônico , Hidrocarbonetos Policíclicos Aromáticos , Antracenos/análise , Resíduo Eletrônico/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo
6.
Environ Int ; 164: 107273, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526298

RESUMO

Human uptake abundance of microplastics via various pathways, and they accumulate in human liver, kidney, gut and even placenta (especially with a diameter of 1 µm or less). Recent scientific studies have found that exposure to microplastics causes intestinal inflammation and liver metabolic disorder, but it remains largely unknown that whether the damage and inflammation may cause further development of severe diseases. In this study, we discovered one of such potential diseases that may be induced by the exposure to small-sized microplastics (with a diameter of 1 µm) performing a multi-organ and multi-omics study comprising metabolomics and microbiome approaches. Unlike other animal experiments, the dosing strategy was applied in mice according to the daily exposure of the highly exposed population, which was more environmentally relevant and reflective of real-world human exposure. Our studies on the gut-liver axis metabolism have shown that the crosstalk between the gut and liver ultimately leaded to insulin resistance and even diabetes. We proactively verified this hypothesis by measuring the levels of fasting blood glucose and fasting insulin, which were found significantly elevated in the mice with microplastics exposure. These results indicate the urgent need of large-scale cohort evaluation on epidemiology and prognosis of insulin resistance after microplastics exposure in future.


Assuntos
Resistência à Insulina , Microplásticos , Animais , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Camundongos , Plásticos/metabolismo , Poliestirenos/metabolismo
7.
Environ Pollut ; 306: 119369, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513195

RESUMO

Electronic waste (e-waste) pollution is of great concern due to the release of hazardous chemicals during the improper e-waste disposal. Many chemicals leached from e-waste were reported to pose estrogenic effects. To date, little is known regarding the occurrence and biological effects of estrogenic chemicals in sediments near an e-waste area. In this study, an effect-directed analysis (EDA) is applied to determine the estrogenic chemicals in sediments of four sites collected from a typical e-waste recycling city in China. Following screening with the ER-CALUX assay, the extract of sample with the most potent effect was subjected in fractionation using reverse phase liquid chromatography. Based on a target analysis for the active fractions, four compounds, including estrone, 17ß-estradiol, 17α-ethinylestradiol and bisphenol A, were identified, and these contributed to 17% of the total toxic effects in the sample. A further nontarget analysis screened four candidates, namely diethylstilbestrol (DES), hexestrol (HES), nandrolone and durabolin, and the total contribution was found to be 48% from the active sample. Specifically, DES and HES were only detected in the active sample and were found to be the primary drivers of estrogenic effects. An examination of the identified chemicals in the four sites indicated that these estrogenic chemicals may originate from e-waste recycling, livestock excretion and domestic waste. These findings uncovered the estrogenic pollutants in sediments from an e-waste area. Considering single endpoint in biological assay is not abundant to screen chemicals with different toxic effects, further EDA studies with multiple endpoints are required to better understand the occurrence of representative or unknown chemicals in e-waste-polluted areas.


Assuntos
Resíduo Eletrônico , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Estrogênios/análise , Estrona/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Ecotoxicol Environ Saf ; 224: 112607, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34411819

RESUMO

Exposure to organochlorine pesticides (OCPs) can cause adverse health effects in the female population. We investigated the dietary OCP intake of childbearing-age women living in large agricultural areas of Northern China, as well as their associated health risks. Ten childbearing-age women were recruited during 2015-2016. Their weekly dietary intake diaries and food samples were collected over the course of five visits. The OCP residues of 322 food samples from seven categories (i.e., cereal, vegetable, fruit, fish, meat, egg, and milk) were analyzed by gas chromatography-mass spectrometry. The average concentrations of the total hexachlorocyclohexanes (ΣHCH), dichlorodiphenyltrichloroethanes and their metabolites (ΣDDX), endosulfans (ΣES), and dieldrin and endrin (ΣDrin) in all food categories were, overall, much lower than the maximum residue limits. Relative high mean residues of ΣDrin and ΣES were found in fruits (ΣDrin: 0.687 ng g-1 wet weight (w.w.), ΣES: 2.24 ng g-1 w.w.) and vegetables (ΣDrin: 0.690 ng g-1 w.w., ΣES: 2.11 ng g-1 w.w.). The estimated daily dietary intake (EDI) of these compounds was calculated, with mean levels of 10.6 (ΣES) > 4.37 (ΣDrin) > 1.51 (ΣHCH) > 0.850 (ΣDDX) ng kg-1 day-1. Women during the heating period (from January to March) tended to ingest more ΣHCH, ΣDDX, ΣDrin, and ΣES. Overall, women had no obvious non-carcinogenic and carcinogenic risks due to intake of OCPs, but 83.9% of them has potential carcinogenic risk, with estimated life carcinogenic risk (LCR) exceeding 10-6. Furthermore, women had a higher potential carcinogenic risk during the heating period (mean LCR: 1.33 × 10-5) than during the non-heating period (mean LCR: 8.50 × 10-6). ΣDrin was the dominant OCP responsible for health risks, followed by ΣHCH. We concluded that women in North China still have some dietary OCP intake, especially during the heating period.

11.
Sci Total Environ ; 686: 599-605, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185407

RESUMO

Preterm birth is an important issue of public reproductive health worldwide. The effects of the toxic metals on the likelihood of spontaneous preterm birth (SPB) are still under discussion. Our study aimed to investigate the association between maternal exposure to the five typical toxic metals or metalloid (i.e. arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb)) and the SPB likelihood. The mothers delivering fetus with SPB (cases) and those with term healthy birth (controls) were chosen from a prospective birth cohort of 3201 women carried out in Shanxi Province, China. A total of 147 SPB cases and 381 controls were included in our nested case-control study. We collected maternal general information by questionnaire and collected their blood sample during recruitment. The serum concentrations of the five toxic metals were measured by inductively coupled-plasma mass spectrometry. We found that the demographic information between the cases and controls were well balanced. The participants in our study had relatively higher serum As concentration. For the other toxic metals (i.e. Cd, Cr, Hg, and Pb), their serum concentrations were overall in the middle range of those from general population. There were no significant associations of the serum concentrations of the five concerned toxic metals with the SPB likelihood. Our study results overall did not support that maternal exposure to As or Cd significantly contribute to the SPB risk in the current exposure level, as well as the other three toxic metals. We further proposed their upper concentration limits in maternal serum from the perspective of SPB likelihood during the early pregnant period, i.e. 18.2 ng/mL of As, 1.05 ng/mL of Cd, 0.96 ng/mL of Cr, 1.07 ng/mL of Hg, and 1.54 ng/mL of Pb.


Assuntos
Poluentes Ambientais/sangue , Exposição Materna/estatística & dados numéricos , Metais Pesados/sangue , Nascimento Prematuro/epidemiologia , Adulto , China/epidemiologia , Poluentes Ambientais/normas , Feminino , Humanos , Recém-Nascido , Exposição Materna/normas , Gravidez
12.
Sci Total Environ ; 682: 208-212, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31121347

RESUMO

Few studies have examined the relationship between exposure to germanium (Ge) and the risk of influenza-like illness (ILI). Therefore, we investigated the association of Ge exposure and its interaction with single nucleotide polymorphisms (SNPs) related to Phase II metabolism on ILI risk among housewives in Shanxi Province, northern China. This cross-sectional study enrolled 373 housewives. Information on the housewives' characteristics and the frequency of ILI was collected by questionnaire. We analyzed the Ge concentrations in hair samples taken from near the scalp at the back of the head. Blood samples were used to identify SNPs related to Phase II metabolism. The results suggested that the hair Ge concentration was associated with ILI risk with an adjusted odds ratio and 95% confidence interval of 2.59 (1.61-4.19). A significant dose-response relationship was observed without or with adjusting for confounders. We did not observe any interaction effect between the hair Ge concentration and the SNPs on ILI risk. We found that high dietary consumption of meat and fried foods was positively correlated with the hair Ge concentration. Therefore, chronic Ge exposure may be a risk factor for an increased frequency of ILI in housewives.


Assuntos
Exposição Ambiental , Germânio/efeitos adversos , Influenza Humana/epidemiologia , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , China/epidemiologia , Estudos Transversais , Relação Dose-Resposta a Droga , Feminino , Cabelo/química , Humanos , Influenza Humana/induzido quimicamente , Influenza Humana/genética , Desintoxicação Metabólica Fase II , Pessoa de Meia-Idade , Fatores de Risco
13.
Environ Pollut ; 251: 400-406, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31100571

RESUMO

The degree of population exposure to various organic pollutants (OPs), including polycyclic aromatic hydrocarbons, organochlorinated pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers, can be determined by measuring their concentrations in human serum. However, performing large-scale measurements with such a variety of compounds in serum is challenging in terms of efficiency and cost. We describe herein the development of a high-efficiency extraction and sample cleanup protocol for simultaneous and quantitative analyses of OPs using gas chromatography-mass spectrometry. OPs, together with crude lipid impurities, were extracted from human serum with a mixture of n-hexane and methyl tert-butyl ether. A disperse sorbent composed of primary secondary amine and C18 (PSA/C18) was used to roughly remove co-extracted impurities. A combined column of neutral silica gel and neutral alumina oxide (AlO/SiG) was then used for deep cleanup. For the removal of impurities, the overall performance of our protocol for the analysis of OPs in serum was comparable to that of traditional gel permeation chromatography (GPC) and dramatically better than that of PSA/C18, which is a frequently used QuEChERS (quick, easy, cheap, effective, rugged, safe) based method. While both the proposed protocol and GPC yielded recoveries of 80%-110% for four classes of OPs, our protocol consumed about 10 times less solvent, resulting in lower experimental expenses and a lower risk of contamination from residual OPs in the solvent and other supplies. In contrast to GPC, our protocol also permits efficient batch processing of serum samples, allowing for large sample sizes such as those encountered in epidemiological studies.


Assuntos
Análise Química do Sangue/métodos , Poluentes Ambientais/sangue , Hidrocarbonetos/sangue , Análise Química do Sangue/normas , Cromatografia em Gel , Custos e Análise de Custo , Cromatografia Gasosa-Espectrometria de Massas , Hexanos/química , Humanos , Hidrocarbonetos/classificação , Lipídeos/química , Lipídeos/isolamento & purificação , Éteres Metílicos/química , Fatores de Tempo
14.
Sci Total Environ ; 580: 69-73, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27951440

RESUMO

The relationship between arsenic (As) exposure and hypertension risk are extensively studied. The As content in scalp hair has been used as a reliable indicator of population for long-time exposure from different sources. Therefore, we investigated the association between hair As concentration and hypertension risk, as well as the potential modifying effects of single nucleotide polymorphisms (SNPs) related to phase II metabolism enzyme genes. We recruited 398 non-working women in Shanxi Province, northern China, from Aug 2012 to May 2013, including 163 subjects with hypertension (cases) and 235 healthy controls. Scalp hair and blood samples were collected from each subject. We analyzed the As concentrations of ~24-cm-long strands of hair representing the two most recent years of growth and SNPs of three genes (epoxide hydrolase 1, N-acetyltransferase 2, and glutathione S-transferase P1) in each subject. The results revealed that the hair As concentration of this population was significantly lower than in populations living near high As polluted sources in China and other countries. The median As concentration (inter-quartile range) of hair in the cases (i.e. 0.211 [0.114-0.395] µg/g hair) was higher than in the controls (i.e. 0.101 [0.048-0.227] µg/g hair). Higher hair As concentrations were associated with an elevated hypertension risk, with an adjusted odds ratio of 2.55 [95% confidence interval: 1.55-4.20]. No interaction effects between hair As concentration and SNPs related to phase II metabolism enzymes on hypertension risk were observed. It was concluded that chronic low exposure level of As might be associated with hypertension risk among the study subjects.


Assuntos
Arsênio/efeitos adversos , Exposição Ambiental/efeitos adversos , Hipertensão/epidemiologia , Adulto , Idoso , Arilamina N-Acetiltransferase/genética , China , Estudos Transversais , Epóxido Hidrolases/genética , Feminino , Glutationa S-Transferase pi/genética , Cabelo/química , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA