Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905042

RESUMO

The concentration of an electrolyte is an optical characteristic of drinking water. We propose a method based on the multiple self-mixing interference with absorption for detecting the Fe2+ indicator as the electrolyte sample at a micromolar concentration. The theoretical expressions were derived based on the lasing amplitude condition in the presence of the reflected lights considering the concentration of the Fe2+ indicator via the absorption decay according to Beer's law. The experimental setup was built to observe MSMI waveform using a green laser whose wavelength was located in the extent of the Fe2+ indicator's absorption spectrum. The waveforms of the multiple self-mixing interference were simulated and observed at different concentrations. The simulated and experimental waveforms both contained the main and parasitic fringes whose amplitudes varied at different concentrations with different degrees, as the reflected lights participated in the lasing gain after absorption decay by the Fe2+ indicator. The experimental results and the simulated results showed a nonlinear logarithmic distribution of the amplitude ratio, the defined parameter estimating the waveform variations, versus the concentration of the Fe2+ indicator via numerical fitting.

2.
Nanoscale ; 11(36): 16968-16977, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31495853

RESUMO

Lithium-sulfur (Li-S) batteries are receiving intense interest owing to their high energy densities, cost effectiveness, and the natural abundance of sulfur. However, practical applications are still limited by rapid capacity decay caused by multielectron redox reactions and complex phase transformations. Here, we include commercially available titanium silicalite-1 (TS-1) in carbon/sulfur cathodes, to introduce strong chemical interactions between the lithium polysulfides (LiPS) and TS-1 in a working Li-S battery. In situ UV-visible spectroscopy together with other experimental results confirm that incorporation of TS-1 mediators enables direct conversion between S82- and S3*- radicals during the discharge process, which effectively promotes the kinetic behaviors of soluble LiPS and regulates uniform nucleation and growth of solid sulfide precipitates. These features give our TS-1 engineered sulfur cathode an ultrahigh initial capacity of 1459 mA h g-1 at 0.1C. Moreover, the system has an impressively high areal capacity (3.84 mA h cm-2) and long cycling stability with a high sulfur loading of 4.9 mg cm-2. This novel and low-cost fabrication procedure is readily scalable and provides a promising avenue for potential industrial applications.

3.
Adv Sci (Weinh) ; 5(7): 1800026, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30027035

RESUMO

Lithium-sulfur batteries suffer from poor cycling stability at high areal sulfur loadings (ASLs) mainly because of the infamous shuttle problem and the increasing diffusion distance for ions to diffuse along the vertical direction of the cathode plane. Here, a carbon nanotube (CNT)/graphene (Gra)-S-Al3Ni2 cathode with 3D network structure is designed and prepared. The 3D network configuration and the Al in the Al3Ni2 provide an efficient channel for fast electron and ion transfer in the three dimensions, especially along the vertical direction of the cathode. The introduction of Ni in the Al3Ni2 is able to suppress the shuttle effect via accelerating reaction kinetics of lithium polysulfide species conversion reactions. The CNT/Gra-S-Al3Ni2 cathode exhibits ultrahigh cycle-ability at 1 C over 800 cycles, with a capacity degradation rate of 0.055% per cycle. Additionally, having high ASLs of 3.3 mg cm-2, the electrode delivers a high reversible areal capacity of 2.05 mA h cm-2 (622 mA h g-1) over 200 cycles at a higher current density of 2.76 mA cm-2 with high capacity retention of 85.9%. The outstanding discharge performance indicates that the design offers a promising avenue to develop long-life cycle and high-sulfur-loading Li-S batteries.

4.
Nanoscale ; 10(23): 10999-11005, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29863730

RESUMO

The current challenge in the development of high-performance lithium-sulfur (Li-S) batteries is to facilitate the redox kinetics of sulfur species as well as to suppress the shuttle effect of polysulfides, especially at high current rates. Herein, aiming the application of Li-S at high current rates, we coupled a sp2 carbon configuration consisting of 3D carbon nanotubes/graphene prepared by ultrahigh temperature treatment (2850 °C) with S (2850CNTs-Gra-S) for application in Li-S batteries. The 2850CNTs-Gra as the host material exhibits a nearly perfect sp2 hybridized structure because ultrahigh temperature treatment not only repairs the raw defects in CNTs and graphene, but it also forms new sp2 C-C bonds between them. The 3D sp2 carbon network ensures ultrafast ion/electron transfer and efficient heat dissipation to protect the integrity of the separator when the Li-S battery is running at an ultrahigh rate. Based on these unique advantages, the 2850CNTs-Gra-S cathode shows a high current rate performance. Critically, it still delivers a considerable specific capacity after 1500 cycles even at a current rate of 15C and exhibits an extremely low capacity degradation rate of 0.0087% per cycle.

5.
Nanotechnology ; 29(30): 305709, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-29741495

RESUMO

The noble metals Au, Ag and Pt were loaded onto Na0.9Mg0.45Ti3.55O8 (NMTO) using a chemical bath deposition method devised in our recent work for the first time. The composite photocatalysts exhibit more effective photodegradation of methylene blue, due to the Schottky barrier built between NMTO and noble metal. Hot electrons generated during localized surface plasmon processes in metal nanoparticles transfer to the semiconductor, manifesting as a depression of surface potential directly detectable by scanning Kelvin probe microscopy. The key factor responsible for the improved ability of semiconductor-based photocatalysts is charge separation. The most effective weight concentrations of Au, Ag and Pt loaded onto NMTO were found to be 5.00%, 12.6% and 5.55% respectively. NMTO loaded with noble metals shows good photostability and recyclability for the degradation of methylene blue. A possible mechanism for the photodegradation of methylene blue over NMTO loaded with noble metals is proposed. This work highlights the potential application of NMTO-based photocatalysts, and provides an effective method to detect localized surface plasmons.

6.
ACS Nano ; 11(2): 2209-2218, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28146627

RESUMO

Lithium-sulfur batteries have become an appealing candidate for next-generation energy-storage technologies because of their low cost and high energy density. However, one of their major practical problems is the high solubility of long-chain lithium polysulfides and their infamous shuttle effect, which causes low Coulombic efficiency and sulfur loss. Here, we introduced a concept involving the dithiothreitol (DTT) assisted scission of polysulfides into lithium-sulfur system. Our designed porous carbon nanotube/S cathode coupling with a lightweight graphene/DTT interlayer (PCNTs-S@Gra/DTT) exhibited ultrahigh cycle-ability even at 5 C over 1100 cycles, with a capacity degradation rate of 0.036% per cycle. Additionally, the PCNTs-S@Gra/DTT electrode with a 3.51 mg cm-2 sulfur mass loading delivered a high initial areal capacity of 5.29 mAh cm-2 (1509 mAh g-1) at current density of 0.58 mA cm-2, and the reversible areal capacity of the cell was maintained at 3.45 mAh cm-2 (984 mAh g-1) over 200 cycles at a higher current density of 1.17 mA cm-2. Employing this molecule scission principle offers a promising avenue to achieve high-performance lithium-sulfur batteries.

7.
Opt Express ; 21(23): 27631-40, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514281

RESUMO

Energy exchange between two filament-forming pulses with initially free chirp in air was experimentally studied. It occurs because of the change of delayed nonlinear refractive index, which slightly chirps the incident filament-forming laser pulses. Accompanying energy exchange process, spectral characteristics of output laser pulses shows dramatic blueshift and supercontinuum generation. Nonlinear absorptive effect introduces an inbalance between energy exchange at the negative delays and that at the positive delays, and affects the energy exchange efficiency. These results may provide a more comprehensive understanding of energy exchange process between filament-forming laser pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA