Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(7): 897-900, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38165649

RESUMO

A novel, biodegradable substrate based, and cost-effective flexible electrochemical sensor was developed for the highly selective and sensitive detection of one of the major neurotransmitters, dopamine, which can be utilised as a disposable electrode for point-of-care diagnostic applications. The active material CuSnB decorated over cellulose paper exhibits good sensitivities of 3.92 µA µM-1 cm-2 with a limit of detection of 0.5 nM. Moreover, the flexible sensor demonstrated superior selectivity towards co-existing metabolites such as ascorbic acid, glucose, and uric acid, in addition to stability at various mechanical deformations.


Assuntos
Celulose , Grafite , Dopamina , Técnicas Eletroquímicas , Glucose , Eletrodos
2.
ACS Omega ; 9(1): 33-51, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222505

RESUMO

Early and rapid detection of neuron-specific enolase (NSE) is highly significant, as it is putative biomarker for small-cell lung cancer as well as COVID-19. Electrochemical techniques have attracted substantial attention for the early detection of cancer biomarkers due to the important properties of simplicity, high sensitivity, specificity, low cost, and point-of-care detection. This work reviews the clinically relevant labeled and label-free electrochemical immunosensors developed so far for the analysis of NSE. The prevailing role of nanostructured materials as electrode matrices is thoroughly discussed. Subsequently, the key performances of various immunoassays are critically evaluated in terms of limit of detection, linear ranges, and incubation time for clinical translation. Electrochemical techniques coupled with screen-printed electrodes developing market level commercialization of NSE sensors is also discussed. Finally, the review concludes with the current challenges associated with available methods and provides a future outlook toward commercialization opportunities for easy detection of NSE.

3.
Mater Horiz ; 11(5): 1212-1222, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38116801

RESUMO

Electrochemical ammonia synthesis, which couples oxygen evolution at the anode with nitrogen reduction at the cathode, holds great significance for future food and energy needs. Both of these half-cell reactions determine the overall cell potential and efficiency of the process. However, the employment of different catalysts on either side, due to discrete mechanisms, increases the complexity and material processing costs of the system, where the designing of a bifunctional catalyst active towards both the NRR and OER is of huge significance. Unfortunately, the initial screening of the designed catalysts via physical characterizations, optical methods and other techniques, does not provide details about the electrochemical activity. The scanning electrochemical microscopy (SECM) technique can be useful to screen multi-catalysts at the same time for their electrochemical activities. Herein, we employed the sample generation-tip collection (SG-TC) mode of SECM to screen the designed NixBy catalysts before half-cell investigations, which suggested that the catalyst synthesized via sonochemical reduction (SR), i.e. NixBy (SR), was a better catalyst. This inference was in accordance with the half-cell NRR and OER measurements (FE: 49% for NH3 production, OER overpotential: 300 mV). By virtue of this remarkable bifunctional activity, the NRR-OER coupled full cell was assembled, which initiated the NH3 production at just 1.7 V and produced NH3 (1.08 mg h-1 mgcat-1) at the cathode and O2 (0.81 mg h-1 mgcat-1) at the anode after 2 h of electrolysis at 1.9 V.

5.
Faraday Discuss ; 243(0): 339-353, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37009712

RESUMO

Ammonia (NH3) is the second most produced chemical commodity with a worldwide production of 235 million tonnes in 2019, by virtue of its importance in fertilizer production, energy storage and transportation, and in the production of industrial chemicals. The most frequent method of NH3 production in large plants (1000 to 1500 t day-1) is the Haber-Bosch process, which has drawbacks of high greenhouse gas emissions (2.16 tonnes CO2 per tonne of NH3) and high energy consumption (over 30 GJ per tonne of NH3) due to high pressure and temperature conditions. For sustainable NH3 production, we require alternative green routes, wherein the electrochemical route holds huge potential due to reduced energy consumption and plant costs, higher selectivity, lower temperatures and pressures, and small to medium scale utilization of NH3. However, there are a number of challenges faced during the same viz. low production rates due to difficult N2 activation and reduced faradaic efficiency due to competing side reactions in aqueous electrolytes. Therefore, the most crucial aspect of electrochemical ammonia production technology is the design of an electrocatalyst which could activate the strong NN triple bond and effectively suppress the competing hydrogen evolution reaction (HER). In addition, the true NH3 yield estimation is of major concern due to the presence of possible N-contaminants, which may possibly lead to false estimation or overestimation of NH3. In this context, we have synthesized an Ag2VO2PO4 electrocatalyst with rice-grain like morphology via an energy efficient and less time consuming sonochemical method to carry out low temperature NH3 synthesis in an alkaline electrolyte. The choice of Ag metal and an alkaline environment effectually suppresses the HER and the bimetallic phosphate materials (Ag and V metals) induce high activity during nitrogen reduction, while rigorous analysis for tracing/elimination of N-labile and reducible species is considered for true NH3 production and assessment.

6.
Small ; 19(24): e2208272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36922907

RESUMO

Electrochemical dinitrogen (N2 ) reduction to ammonia (NH3 ) coupled with methanol electro-oxidation is presented in the current work. Here, methanol oxidation reaction (MOR) is proposed as an alternative anode reaction to oxygen evolution reaction (OER) to accomplish electrons-induced reduction of N2 to NH3 at cathode and oxidation of methanol at anode in alkaline media thereby reducing the overall cell voltage for ammonia production. Cobalt pyrophosphate micro-flowers assembled by nanosheets are synthesized via a surfactant-assisted sonochemical approach. By virtue of structural and morphological advantages, the maximum Faradaic efficiency of 43.37% and NH3 yield rate of 159.6 µg h-1 mgca -1 is achieved at a potential of -0.2 V versus RHE. The proposed catalyst is shown to also exhibit a very high activity (100 mA mg-1 at 1.48 V), durability (2 h) and production of value-added formic acid at anode (2.78 µmol h-1 mgcat -1 and F.E. of 59.2%). The overall NH3 synthesis is achieved at a reduced cell voltage of 1.6 V (200 mV less than NRR-OER coupled NH3 synthesis) when OER at anode is replaced with MOR and a high NH3 yield rate of 95.2 µg h-1 mgcat -1 and HCOOH formation rate of 2.53 µmol h-1 mg-1 are witnessed under full-cell conditions.

7.
ACS Appl Mater Interfaces ; 15(3): 4033-4043, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36648019

RESUMO

Electrochemical dinitrogen reduction (NRR) has riveted substantial attention as a greener method to synthesize ammonia (NH3) under ambient conditions. Here, B, N-containing carbon catalysts with a discrete morphology were synthesized from the metal-organic framework-ionic liquid (MOF-IL) composite for NRR in a neutral electrolyte medium (pH = 7). Morphology-dependent activity is witnessed, wherein C-BN@600 with a nanotubular morphology is able to achieve a high NH3 yield rate of 204 µg h-1 mgcat-1 and an F.E. of 16.7% with a TOF value of 0.2 h-1 at -0.2 V vs RHE. Further, a rigorous protocol is put forward for true NH3 estimation by tracing/eliminating any source of contamination in catalysts, electrolytes, or gas supply via ultraviolet-visible (UV-vis) spectroscopy, gas-purification methods, and isotope labeling experiments. Density functional theory predicts BN to be the favorable active site for N2 adsorption with a reduced energy barrier in the first reduction step and sequential stabilization of the B-N bond by an adjacent carbon atom.

8.
Nanoscale ; 14(44): 16590-16601, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317393

RESUMO

The conversion of the abundant biodegradable material into electroactive electrode material can be a good resource for sustainable energy conversion and storage applications. Herein, we present a simple, cost-effective and green approach for the fabrication of a flexible cellulose paper electrode using an electroless-electrodeposition method. The one-step electroless deposition route is followed to induce conductivity into a non-conductive cellulose paper substrate without using any expensive activators or sensitisers. The Fe3O4 is then electro-deposited as an active catalyst over the conductive paper substrate for use in electrochemical activities. The as-fabricated paper electrode shows promising activity and stability during the dinitrogen reduction reaction (NRR) as well as oxygen bifunctional electrocatalysis. A faradaic efficiency of 4.32% with a yield rate of 245 µg h-1 mgcat-1 at -0.1 V is achieved for NRR whereas a very small overpotential of 180 mV is required to reach 10 mA cm-2 during OER, and the ORR reaction starts at the onset potential of 0.86 V. The practical applicability of the paper electrode is validated by assembling a Zn-O2 battery showing a peak power density of 81 mW cm-2 and a stability up to 35 h during charge-discharge cycles, which can power the NRR to produce NH3 under full cell conditions.

9.
Environ Sci Pollut Res Int ; 29(53): 80787-80804, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35729378

RESUMO

Microbial fuel cells (SC-MFCs) have emerged as green energy devices to resolve the growing energy and environmental crisis. However, the technology's application depends on the sluggish oxygen reduction reaction (ORR) kinetics. Among the electrocatalysts explored, transition metal-nitrogen-carbon composites exhibit satisfactory ORR activity. Herein, we investigate the performance of copper-nitrogen-carbon (Cu/NC) electrocatalysts for ORR, highlighting the effect of temperature, role of nitrogen functionalities, and Cu-Nx sites in catalyst performance. Cu/NC-700 demonstrated satisfactory ORR activity with an onset potential of 0.7 V (vs. RHE) and a limiting current density of 3.4 mA cm-2. Cu/NC-700 modified MFC exhibited a maximum power density of 489.2 mW m-2, higher than NC-700 (107.3 mW m-2). These observations could result from synergistic interaction between copper and nitrogen atoms, high density of Cu-Nx sites, and high pyridinic-N content. Moreover, the catalyst exhibited superior stability, implying its use in long-term operations. The electrocatalytic performance of the catalyst suggests that copper-doped carbon catalysts could be potential metal-nitrogen-carbon material for scaled-up MFC applications.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas , Carbono , Nitrogênio , Cobre , Eletrodos , Oxigênio , Oxirredução
10.
Chem Commun (Camb) ; 57(97): 13084-13113, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34811563

RESUMO

The rapid and accurate determination of the dopamine (neurotransmitter) and cholesterol level in bio-fluids is significant because they are crucial bioanalytes for several lethal diseases, which require early diagnosis. The level of DA in the brain is modulated by the dopamine active transporter (DAT), and is influenced by cholesterol levels in the lipid membrane environment. Accordingly, electrochemical biosensors offer rapid and accurate detection and exhibit unique features such as low detection limits even with reduced volumes of analyte, affordability, simple handling, portability and versatility, making them appropriate to deal with augmented challenges in current clinical and point-of-care diagnostics for the determination of dopamine (DA) and cholesterol. This feature article focuses on the development of ultrasensitive electrochemical biosensors for the detection of cholesterol and DA for real-time and onsite applications that can detect targeted analytes with reduced volumes and sub-picomolar concentrations with quick response times. Furthermore, the development of ultrasensitive biosensors via cost-effective, simple fabrication procedures, displaying high sensitivity, selectivity, reliability and good stability is significant in the impending era of electrochemical biosensing. Herein, we emphasize on recent advanced nanomaterials used for the ultrasensitive detection of DA and cholesterol and discuss in depth their electrochemical activities towards ultrasensitive responses. Key points describing future perspectives and the challenges during detection with their probable solutions are discussed, and the current market is also surveyed. Further, a comprehensive review of the literature indicates that there is room for improvement in the miniaturization of cholesterol and dopamine biosensors for lab-on-chip devices and overcoming the current technical limitations to facilitate full utilization by patients at home.


Assuntos
Técnicas Biossensoriais , Colesterol/análise , Dopamina/análise , Técnicas Eletroquímicas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA