Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(21): 215801, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31671415

RESUMO

Crystal, electronic structure, dc and ac magnetization properties of the hole substituted (Sr2+) and partially B-site disordered double perovskite Pr2-x Sr x CoMnO6 system have been investigated. The XRD pattern analysis showed a systematic decrease in the lattice parameters owing to the enhanced oxidation states of the Co/Mn ions. The electronic structure study by XPS measurements suggested the presence of mixed valence states of the B-site ions (Co2+ /Co3+ and Mn3+ /Mn4+) with significant enhancement of the average oxidation states due to hole doping. The mere absence of electronic states near the Fermi level in the valence band (VB) spectra for both pure (x = 0.0) and Sr doped (x = 0.5) systems indicated the insulating nature of the samples. Sr substitution is observed to increase the spectral weight near the Fermi level suggesting for an enhanced conductivity of the hole doped system. The dc magnetization data divulged a Griffiths like phase above the long-range ordering temperature. A typical re-entrant spin glass like phase driven by the inherent anti-site disorder (ASD) has been recognized by ac susceptibility study for both the pure and doped systems. Most interestingly, the emergence of a new cluster glass like phase (immediately below the magnetic ordering temperature and above the spin-glass transition temperature) solely driven by the Sr substitution has been unravelled by ac magnetization dynamics study. Observation of these dual glassy states in a single system is scarce and hence placed the present system amongst the rare materials. The isothermal magnetization measurements further probed the exhibition of the giant exchange bias effect originated from the interfacial exchange interactions due to existence of low temperature antiferromagnetic clusters embedded in the glassy matrix.

2.
J Phys Condens Matter ; 31(27): 275802, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30921773

RESUMO

Electronic structure of Pr2CoFeO6 (at 300 K) was investigated by x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy techniques. All three cations, i.e. Pr, Co and Fe were found to be trivalent in nature. XPS valance band analysis suggested the system to be insulating in nature. The analysis suggested that Co3+ ions exist in low spin state in the system. Moreover, Raman spectroscopy study indicated the random distribution of the B-site ions (Co/Fe) triggered by same charge states. In temperature-dependent Raman study, the relative heights of the two observed phonon modes exhibited anomalous behaviour near magnetic transition temperature T N ~ 270 K, thus indicating towards interplay between spin and phonon degrees of freedom in the system. Furthermore, clear anomalous softening was observed below T N which confirmed the existence of strong spin-phonon coupling occurring for at least two phonon modes of the system. The line width analysis of the phonon modes essentially ruled out the role of magnetostriction effect in the observed phonon anomaly. The investigation of the lattice parameter variation across T N (obtained from the temperature-dependent neutron diffraction measurements) further confirmed the existence of the spin-phonon coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA