Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(4): 2440-2448, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37961840

RESUMO

BACKGROUND: In recent years, millets are often considered an emerging crop for sustainable agriculture. Therefore, millets can be exploited as an alternative source of starch which has many applications ranging from food, packaging, bioplastics, and others. However, starch is seldom used in its native form and is more often modified to enhance its functional properties. In literature, many traditional millet-based food recipes often incorporate a fermentation step before cooking. Therefore, using this traditional knowledge fermentation has been explored as a potential method for modifying millet starch. RESULTS: Pearl millet (PM) and finger millet (FM) flour were allowed to naturally ferment for 24 h followed by starch extraction. Compared to native (N) starch, water/oil holding capacity and least gelation concentration of fermented (F) starch decreased with no significant change in swelling power. The solubility, paste clarity and in vitro digestibility of starch were significantly affected by fermentation. X-ray diffraction (XRD) data indicates that after fermentation, crystallinity increased while the A-type crystalline structure remained intact. Fourier-transform infrared (FTIR) spectra showed no deletion or addition of any new functional groups. Thermal characterization by differential scanning calorimetry (DSC) showed that the enthalpy of gelatinization of PM starch decreased while that of FM starch increased after fermentation. CONCLUSION: The results indicate that 24 h natural fermentation had a significant impact on functional properties of starch without altering the structural architecture of starch granules. Therefore, fermentation can be further explored as a low-cost alternative for starch modification. © 2023 Society of Chemical Industry.


Assuntos
Eleusine , Amido , Amido/química , Eleusine/metabolismo , Fermentação , Difração de Raios X , Solubilidade
2.
Front Nutr ; 9: 971784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211518

RESUMO

Probiotics are known as the live microorganisms which upon adequate administration elicit a health beneficial response inside the host by decreasing the luminal pH, eliminating the pathogenic bacteria in the gut as well as producing short chain fatty acids (SCFA). With advancements in research; probiotics have been explored as potential ingredients in foods. However, their use and applications in food industry have been limited due to restrictions of maintaining the viability of probiotic cells and targeting the successful delivery to gut. Encapsulation techniques have significant influence on increasing the viability rates of probiotic cells with the successful delivery of cells to the target site. Moreover, encapsulating techniques also prevent the live cells from harsh physiological conditions of gut. This review discusses several encapsulating techniques as well as materials derived from natural sources and nutraceutical compounds. In addition to this, this paper also comprehensively discusses the factors affecting the probiotics viability and evaluation of successful release and survival of probiotics under simulated gastric, intestinal conditions as well as bile, acid tolerant conditions. Lastly applications and challenges of using encapsulated bacteria in food industry for the development of novel functional foods have also been discussed in detail too. Future studies must include investigating the use of encapsulated bacterial formulations in in-vivo models for effective health beneficial properties as well as exploring the mechanisms behind the successful release of these formulations in gut, hence helping us to understand the encapsulation of probiotic cells in a meticulous manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA