Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Plants (Basel) ; 12(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771720

RESUMO

Endophytes are primarily endosymbiotic bacteria and fungi that colonize the interior tissues of their host plant. They enhance the host plant's growth and attenuate adverse effects of biological stress. Endophytic species of many indigenous plants are an untapped resource of plant growth-promoting microorganisms that can mitigate abiotic stress effects. Thus, this study aimed to isolate endophytes from the roots and leaves of the medicinal plant Endostemon obtusifolius to evaluate their in vitro growth-promoting capacities and drought tolerance and to characterize the most promising species. Twenty-six endophytes (fourteen bacteria and twelve fungi) were isolated and cultured from the roots and leaves of E. obtusifolius. All 26 endophytes produced flavonoids, and 14 strains produced phenolic compounds. Of the 11 strains that displayed good free radical scavenging capability (low IC50) in the 1-1-diphenyl-1-picryhydrazyl radical scavenging assay, only three strains could not survive the highest drought stress treatment (40% polyethylene glycol). These 11 strains were all positive for ammonia and siderophore production and only one strain failed to produce hydrogen cyanide and solubilize phosphate. Seven isolates showed aminocyclopropane-1-carboxylate deaminase activity and differentially synthesized indole-3-acetic acid. Using molecular tools, two promising symbiotic, drought stress tolerant, and plant growth-enhancing endophytic species (EORB-2 and EOLF-5) were identified as Paenibacillus polymyxa and Fusarium oxysporum. The results of this study demonstrate that P. polymyxa and F. oxysporum should be further investigated for their drought stress mitigation and plant growth enhancement effects as they have the potential to be developed for use in sustainable agricultural practices.

4.
Plant Methods ; 18(1): 87, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739596

RESUMO

BACKGROUND: Quercetin is one of the most important bioflavonoids having positive effects on the biological processes and human health. Typically, it is extracted from plant matrices using conventional methods such as maceration, sonication, infusion, and Soxhlet extraction with high solvent consumption. Our study aimed to optimize the environmentally friendly carbon dioxide-based method for the extraction of quercetin from quince fruit with an emphasis on extraction yield, repeatability, and short extraction time. RESULTS: A two-step design of experiments was used for the optimization of the key parameters affecting physicochemical properties, including CO2/co-solvent ratio, co-solvent type, temperature, and pressure. Finally, gas expanded liquid combining CO2/ethanol/H2O in a ratio of 10/81/9 (v/v/v) provided the best extraction yield. Extraction temperature 66 °C and pressure 22.3 MPa were the most suitable conditions after careful optimization, although both parameters did not significantly affect the process. It was confirmed by experiments in various pressure and temperature conditions and statistical comparison of obtained data. The optimized extraction procedure at a flow rate of 3 mL/min took 30 min. The repeatability of the extraction method exhibited an RSD of 20.8%. CONCLUSIONS: The optimized procedure enabled very fast extraction in 30 min using environmentally friendly solvents and it was successfully applied to 16 different plant samples, including 14 bulbs and 2 fruits from South Africa. The quercetin content in extracts was quantified using ultra-high performance liquid chromatography (UHPLC) with tandem mass spectrometry. UHPLC hyphenated with high-resolution mass spectrometry was used to confirm chemical identity of quercetin in the analyzed samples. We quantified quercetin in 11 samples of all 16 tested plants. The quercetin was found in Agapanthus praecox from the Amaryllidaceae family and its presence in this specie was reported for the first time.

6.
J Plant Physiol ; 262: 153437, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034041

RESUMO

Detrimental effects caused by the overuse of synthetic agrochemicals have led to the development of natural biostimulants such as seaweed extracts and plant growth-promoting rhizobacteria (PGPR) being used as an alternative, environmentally-friendly technology to improve crop growth and increase agricultural yields. The present study aimed to investigate the interactions between PGPR and a commercial seaweed extract on the growth and biochemical composition of onion (Allium cepa). A pot trial was conducted under greenhouse conditions where onion plants were treated individually with the two PGPR, namely Bacillus licheniformis (BL) and Pseudomonas fluorescens (PF) and a seaweed extract Kelpak® (KEL) and combinations of KEL + BL and KEL + PF. Growth and yield parameters were measured after 12 weeks. KEL-treated plants showed the best growth response and overcame the inhibitory effects of BL treatment. KEL-treated plants also had the highest chlorophyll content. PGPR application improved the mineral nutrition of onion with these plants having the highest mineral content in the leaves and bulb. All biostimulant treatments increased the endogenous cytokinin and auxin content with the highest concentrations generally detected in the PF-treated plants. These results suggest that co-application of different biostimulant classes with different modes of action could further increase crop productivity with an improvement in both growth and nutrition content being achieved in onion with the co-application of a seaweed extract and PGPR.


Assuntos
Bacillus licheniformis , Cebolas/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Pseudomonas fluorescens , Alga Marinha/química , Bacillus licheniformis/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Produção Agrícola/métodos , Cebolas/efeitos dos fármacos , Cebolas/microbiologia , Cebolas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas fluorescens/metabolismo
7.
Biotechnol Adv ; 39: 107462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31669137

RESUMO

The escalating demand for secondary metabolites in international markets poses a severe threat to many plant species. An unscrupulous collection is also the immediate challenge to the survival of many unthreatened as well as vulnerable plants. Fungal endophytes have emerged in recent years as a promising substitute for sources of plant secondary metabolites. Many appealing secondary metabolites with potent antibacterial, antifungal, insecticidal, antioxidant, cytotoxic and anticancer properties have been discovered from endophytic fungi. Concerning their distinctive genetic and metabolic diversity and promising activities, they hold a plausible application in medicine and industry. However, there is little success in utilizing the pharmaceutical potential of fungal endophytes. Cutting-edge research is desirable to establish and bolster in vitro biosynthetic proficiency of fungal endophytes. Modern biotechnological techniques [such as multilocus sequence typing (MLST), metabolomics, metagenomics and next-generation sequencing (NGS) technologies] and bioinformatics approaches can fill a gap in fungal endophyte research. The present review focuses on how advanced chemical, biotechnological and computational molecular biology methods can be used for robust exploitation of bioactive compounds from these microorganisms.


Assuntos
Fungos , Antifúngicos , Endófitos , Tipagem de Sequências Multilocus , Plantas
8.
Plant Physiol ; 181(2): 458-470, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31413205

RESUMO

The biologically active molecules karrikinolide (KAR1) and trimethylbutenolide (TMB) present in wildfire smoke play a key role in regulating seed germination of many plant species. To elucidate the physiological mechanism by which smoke-water (SW), KAR1, and TMB regulate seed germination in photosensitive 'Grand Rapids' lettuce (Lactuca sativa), we investigated levels of the dormancy-inducing hormone abscisic acid (ABA), three auxin catabolites, and cytokinins (26 isoprenoid and four aromatic) in response to these compounds. Activity of the hydrolytic enzymes α-amylase and lipase along with stored food reserves (lipids, carbohydrate, starch, and protein) were also assessed. The smoke compounds precisely regulated ABA and hydrolytic enzymes under all light conditions. ABA levels under red (R) light were not significantly different in seeds treated with TMB or water. However, TMB-treated seeds showed significantly inhibited germination (33%) compared with water controls (100%). KAR1 significantly enhanced total isoprenoid cytokinins under dark conditions in comparison with other treatments; however, there was no significant effect under R light. Enhanced levels of indole-3-aspartic acid (an indicator of high indole-3-acetic acid accumulation, which inhibits lettuce seed germination) and absence of trans-zeatin and trans-zeatin riboside (the most active cytokinins) in TMB-treated seeds might be responsible for reduced germination under R light. Our results demonstrate that SW and KAR1 significantly promote lettuce seed germination by reducing levels of ABA and enhancing the activity of hydrolytic enzymes, which aids in mobilizing stored reserves. However, TMB inhibits germination by enhancing ABA levels and reducing the activity of hydrolytic enzymes.


Assuntos
4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Furanos/farmacologia , Germinação/efeitos dos fármacos , Lactuca/efeitos dos fármacos , Piranos/farmacologia , Fumaça , Interações Medicamentosas , Lactuca/metabolismo , Fitocromo/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
9.
Plant Methods ; 15: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372177

RESUMO

BACKGROUND: Karrikins (KARs) are plant growth regulators that promote seed germination and the subsequent growth and development of seedlings of many plant species. In nature they are generated and released by combustion of plant material and promote the restoration of burned ecosystems. Smoke water can be artificially prepared as a saturated extract of all substances in smoke produced by burning plants, and it has various horticultural and agricultural applications. RESULTS: We have developed, validated and applied the first fast, specific and sensitive method, based on ultra-high performance liquid chromatography-tandem mass spectrometry, for quantifying KARs in smoke water. To assist these efforts and further analyses, standards of the main KARs (which are not commercially available) were synthesized. Due to the complex matrix of smoke waters, two quantification approaches (standard dilution with a structural KAR analogue and standard addition) were compared. The standard addition method allowed absolute quantification of KARs in six of eight smoke water samples of diverse origins and ages. CONCLUSIONS: Our findings reveal differences in both total and relative levels of KARs in smoke water, and indicate that differences in its KAR composition may be linked to variations in its bioactivity.

10.
World J Microbiol Biotechnol ; 34(8): 111, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980864

RESUMO

Centella asiatica (L.) Urban is a highly considered medicinal plant owing to its secondary metabolites asiaticoside, madecassoside, asiatic acid, and madecassic acid. The asiaticoside, one of the most important constituents of the plant, is a triterpenoid saponin having memory enhancement property. Given its medicinal properties, we isolated and characterized endophytic fungi from this plant with the aim to screen these microorganisms for asiaticoside production. In total, we isolated 13 endophytic fungi from the leaves of the plant, out of which one of the isolates produced asiaticoside. This asiaticoside producing isolate was identified as Colletotrichum gloeosporioides by internal transcribed spacer-based rDNA sequencing. The presence of asiaticoside in ethyl acetate extract of C. gloeosporioides was confirmed by LC-MS. The production of asiaticoside measured in relation to incubation time and subculture generation revealed presence of 62.29 ± 3.36 µg/100 mL of asiaticoside by C. gloeosporioides on the 15th day in first subculture generation followed by a decrease in subsequent generations. A similar trend was also shown by yield and growth curve of C. gloeosporioides. The asiaticoside production and yield were found to be positively correlated. This paper reported the production of asiaticoside by an endophytic fungus C. gloeosporioides for the first time. The present findings definitely provide an impetus to the production of asiaticoside by utilizing the endophytic source. Chemical compound studied in this article: Asiaticoside (PubChemCID: 108062).


Assuntos
Centella/microbiologia , Endófitos/isolamento & purificação , Endófitos/metabolismo , Fungos/isolamento & purificação , Fungos/metabolismo , Triterpenos/isolamento & purificação , Colletotrichum/classificação , Colletotrichum/isolamento & purificação , Colletotrichum/metabolismo , Endófitos/classificação , Fungos/classificação , Filogenia , Folhas de Planta/microbiologia , Plantas Medicinais , Metabolismo Secundário , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA