Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36750363

RESUMO

Comparative neuroimaging allows for the identification of similarities and differences between species. It provides an important and promising avenue, to answer questions about the evolutionary origins of the brain´s organization, in terms of both structure and function. Dog functional magnetic resonance imaging (fMRI) has recently become one particularly promising and increasingly used approach to study brain function and coevolution. In dog neuroimaging, image acquisition has so far been mostly performed with coils originally developed for use in human MRI. Since such coils have been tailored to human anatomy, their sensitivity and data quality is likely not optimal for dog MRI. Therefore, we developed a multichannel receive coil (K9 coil, read "canine") tailored for high-resolution functional imaging in canines, optimized for dog cranial anatomy. In this paper we report structural (n = 9) as well as functional imaging data (resting-state, n = 6; simple visual paradigm, n = 9) collected with the K9 coil in comparison to reference data collected with a human knee coil. Our results show that the K9 coil significantly outperforms the human knee coil, improving the signal-to-noise ratio (SNR) across the imaging modalities. We noted increases of roughly 45% signal-to-noise in the structural and functional domain. In terms of translation to fMRI data collected in a visual flickering checkerboard paradigm, group-level analyses show that the K9 coil performs better than the knee coil as well. These findings demonstrate how hardware improvements may be instrumental in driving data quality, and thus, quality of imaging results, for dog-human comparative neuroimaging.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Cães , Humanos , Animais , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Razão Sinal-Ruído , Encéfalo/diagnóstico por imagem
2.
Cereb Cortex Commun ; 3(1): tgac009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372838

RESUMO

Retrieval practice improves retention of information in long-term memory more than restudy, but the underlying neural mechanisms of this "retrieval practice effect" (RPE) remain poorly understood. Therefore, we investigated the behavioral and neural differences between previously retrieved versus restudied items at final retrieval. Thirty younger (20-30 years old) and twenty-five older (50+ years old) adults learned familiar and new picture stimuli either through retrieval or restudy. At final recognition, hemodynamic activity was measured using functional magnetic resonance imaging (fMRI). Behaviorally, younger and older adults showed similar benefits of retrieval practice, with higher recollection, but unchanged familiarity rates. In a univariate analysis of the fMRI data, activation in medial prefrontal cortex and left temporal regions correlated with an individual's amount of behavioral benefit from retrieval practice, irrespective of age. Compatible with this observation, in a multivariate representational similarity analysis (RSA), retrieval practice led to an increase in pattern similarity for retested items in a priori defined regions of interest, including the medial temporal lobe, as well as prefrontal and parietal cortex. Our findings demonstrate that retrieval practice leads to enhanced long-term memories in younger and older adults alike, and this effect may be driven by fast consolidation processes.

3.
J Neurosci ; 39(22): 4344-4352, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30902871

RESUMO

The retrieval (or testing) of information leads to better memory performance compared with reencoding. This phenomenon is known as "testing effect" or "retrieval practice effect" and has been primarily described in behavioral studies with healthy young subjects. However, possible age-related changes and their associated underlying neural processes, in particular neural oscillations, remain unclear. To address this issue, we used a previously established paradigm in healthy young (N = 27) and elderly (N = 28) male and female human adults while their brain activity was being recorded using EEG. Subjects viewed prefamiliarized scene images intermixed with new scenes and classified them as indoor versus outdoor (encoding task) or old versus new (retrieval task). Subsequently, subjects performed a recognition memory task 10 min and 24 h after encoding. Behaviorally, both age groups showed the testing effect at both time points but, importantly, it was less pronounced in the elderly. At the neural level, the retrieval compared with the encoding task was accompanied by power decreases in the alpha (9-12 Hz) and beta bands (13-30 Hz), possibly reflecting task demands, and this difference was more pronounced in the elderly. Finally, a correlation analysis revealed that those elderly who displayed a more pronounced testing effect exhibited a neural pattern that was more similar to the younger subjects. These findings provide evidence that the testing effect decreases across the life span, and they suggest that changes in alpha-beta oscillations play a direct role.SIGNIFICANCE STATEMENT Learning new and retrieving old information is part of everyday human life. Understanding how learning processes can be optimized therefore has direct applications in the realm of educational and rehabilitative contexts. Here, we show that retrieval practice is a strategy to optimize encoding into long-term memory in both young and elderly humans. Importantly, retrieval practice was significantly reduced in the elderly and closely related to changes in alpha (9-13 Hz) and beta band (13-30 Hz) oscillations. Our findings suggest that decreased retrieval practice effects across the life span contribute to, and may reflect, age-related declines in memory performance. They further provide new insights into the underlying neural mechanisms and point toward future avenues for neuro-modulatory interventions.


Assuntos
Envelhecimento/fisiologia , Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Encéfalo/fisiologia , Rememoração Mental/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Front Psychol ; 10: 2997, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038382

RESUMO

Retrieving information improves subsequent memory performance more strongly than restudying. However, despite recent evidence for this retrieval practice effect (RPE), the temporal dynamics, age-related changes, and their possible interactions remain unclear. Therefore, we tested 45 young (18-30 years) and 41 older (50 + years) participants with a previously established RP paradigm. Specifically, subjects retrieved and restudied scene images on Day 1; subsequently, their recognition memory for the presented items was tested on the same day of learning and 7 days later using a remember/know paradigm. As main findings we can show that both young and older adults benefited from RP, however, the older participants benefited to a lesser extent. Importantly, the RPE was present immediately after learning on Day 1 and 7 days later, with no significant differences between time points. Finally, RP improved recollection rates more strongly than familiarity rates, independent of age and retrieval interval. Together, our results provide evidence that the RPE is reduced but still existing in older adults, it is stable over a period of seven days and relies more strongly on hippocampus-based recollection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA