Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37623671

RESUMO

Autologous bone transplantation is still considered as the gold standard therapeutic option for bone defect repair. The alternative tissue engineering approaches have to combine good hardiness of biomaterials whilst allowing good stem cell functionality. To become more useful for load-bearing applications, mechanical properties of calcium phosphate materials have to be improved. In the present study, we aimed to reduce the brittleness of ß-tricalcium phosphate (ß-TCP). For this purpose, we used three polymers (PDL-02, -02a, -04) for coatings and compared resulting mechanical and degradation properties as well as their impact on seeded periosteal stem cells. Mechanical properties of coated and uncoated ß-TCP scaffolds were analyzed. In addition, degradation kinetics analyses of the polymers employed and of the polymer-coated scaffolds were performed. For bioactivity assessment, the scaffolds were seeded with jaw periosteal cells (JPCs) and cultured under untreated and osteogenic conditions. JPC adhesion/proliferation, gene and protein expression by immunofluorescent staining of embedded scaffolds were analyzed. Raman spectroscopy measurements gave an insight into material properties and cell mineralization. PDL-coated ß-TCP scaffolds showed a significantly higher flexural strength in comparison to that of uncoated scaffolds. Degradation kinetics showed considerable differences in pH and electrical conductivity of the three different polymer types, while the core material ß-TCP was able to stabilize pH and conductivity. Material differences seemed to have an impact on JPC proliferation and differentiation potential, as reflected by the expression of osteogenic marker genes. A homogenous cell colonialization of coated and uncoated scaffolds was detected. Most interesting from a bone engineer's point of view, the PDL-04 coating enabled detection of cell matrix mineralization by Raman spectroscopy. This was not feasible with uncoated scaffolds, due to intercalating effects of the ß-TCP material and the JPC-formed calcium phosphate. In conclusion, the use of PDL-04 coating improved the mechanical properties of the ß-TCP scaffold and promoted cell adhesion and osteogenic differentiation, whilst allowing detection of cell mineralization within the ceramic core material.

2.
Chembiochem ; 24(7): e202200760, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652672

RESUMO

The aggregation of amyloid-ß 42 (Aß42) is directly related to the pathogenesis of Alzheimer's disease. Here, we have investigated the early stages of the aggregation process, during which most of the cytotoxic species are formed. Aß42 aggregation kinetics, characterized by the quantification of Aß42 monomer consumption, were tracked by real-time solution NMR spectroscopy (RT-NMR) allowing the impact that low-molecular-weight (LMW) inhibitors and modulators exert on the aggregation process to be analysed. Distinct differences in the Aß42 kinetic profiles were apparent and were further investigated kinetically and structurally by using thioflavin T (ThT) and transmission electron microscopy (TEM), respectively. LMW inhibitors were shown to have a differential impact on early-state aggregation. Insight provided here could direct future therapeutic design based on kinetic profiling of the process of fibril formation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Cinética , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fragmentos de Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA