Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 70: 103058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310683

RESUMO

A multitude of cellular metabolic and regulatory processes rely on controlled thiol reduction and oxidation mechanisms. Due to our aerobic environment, research preferentially focuses on oxidation processes, leading to limited tools tailored for investigating cellular reduction. Here, we advocate for repurposing HyPer1, initially designed as a fluorescent probe for H2O2 levels, as a tool to measure the reductive power in various cellular compartments. The response of HyPer1 depends on kinetics between thiol oxidation and reduction in its OxyR sensing domain. Here, we focused on the reduction half-reaction of HyPer1. We showed that HyPer1 primarily relies on Trx/TrxR-mediated reduction in the cytosol and nucleus, characterized by a second order rate constant of 5.8 × 102 M-1s-1. On the other hand, within the mitochondria, HyPer1 is predominantly reduced by glutathione (GSH). The GSH-mediated reduction rate constant is 1.8 M-1s-1. Using human leukemia K-562 cells after a brief oxidative exposure, we quantified the compartmentalized Trx/TrxR and GSH-dependent reductive activity using HyPer1. Notably, the recovery period for mitochondrial HyPer1 was twice as long compared to cytosolic and nuclear HyPer1. After exploring various human cells, we revealed a potent cytosolic Trx/TrxR pathway, particularly pronounced in cancer cell lines such as K-562 and HeLa. In conclusion, our study demonstrates that HyPer1 can be harnessed as a robust tool for assessing compartmentalized reduction activity in cells following oxidative stress.


Assuntos
Peróxido de Hidrogênio , Tiorredoxina Dissulfeto Redutase , Humanos , Peróxido de Hidrogênio/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Oxirredução , Glutationa/metabolismo , Linhagem Celular Tumoral , Compostos de Sulfidrila , Tiorredoxinas/metabolismo
2.
Biochem Biophys Res Commun ; 642: 137-144, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36577250

RESUMO

Pro-oxidative shift in redox balance, usually termed as "oxidative stress", can lead to different cell responses depending on its intensity. Excessive accumulation of reactive oxygen species ("oxidative distress") can cause DNA, lipid and protein damage. Physiological oxidative stimulus ("oxidative eustress"), in turn, can favor cell proliferation and differentiation - the processes of paramount importance primarily for stem cells. Functions of antioxidant enzymes in cells is currently a focus of intense research, however the role of different antioxidant pathways in pluripotent cell responses to oxidative distress/eustress is still under investigation. In this study, we assessed the contribution of the thioredoxin reductase (TrxR)-dependent pathways to maintaining the redox homeostasis in human induced pluripotent stem cells and their differentiated progeny cells under basal conditions and under conditions of oxidative stress of varying intensity. Employing the genetically encoded H2O2 biosensor cyto-HyPer and two inhibitors of thioredoxin reductase (auranofin and Tri-1), we show that the reduced activity of TrxR-dependent enzymatic systems leads to the non-cytotoxic disruption of thiol-disulfide metabolism in the cytoplasm of both pluripotent and differentiated cells under basal conditions. Quantifying the cytoplasmic concentrations of peroxide establishing in H2O2-stressed cells, we demonstrate that TrxR-dependent pathways contribute to the antioxidant activity in the cell cytoplasm under conditions of mild but not severe oxidative stress in both cell lines tested. The observed effects may testify about a conservative role of the TrxR-controlled enzymatic systems manifested as a response to physiological redox stimuli rather than a protection against the severe oxidative stress.


Assuntos
Antioxidantes , Células-Tronco Pluripotentes Induzidas , Humanos , Antioxidantes/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Peróxido de Hidrogênio/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Tiorredoxinas/metabolismo
3.
Redox Biol ; 50: 102245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35114579

RESUMO

Application of genetically encoded biosensors of redox-active compounds promotes the elaboration of new methods for investigation of intracellular redox activities. Previously, we have developed a method to measure quantitatively the intracellular concentration of hydrogen peroxide (H2O2) in living cells using genetically encoded biosensor HyPer. In the present study, we refined the method and applied it for comparing the antioxidant system potency in human cells of different phenotypes by measuring the gradient between the extracellular and cytoplasmic H2O2 concentrations under conditions of H2O2-induced external oxidative stress. The measurements were performed using cancer cell lines (K-562 and HeLa), as well as normal human cells - all expressing HyPer in the cell cytoplasm. As normal cells, we used three isogenic lines of different phenotypes - mesenchymal stem/stromal cells (MSCs), induced pluripotent stem cells (iPSCs) derived from MSCs by reprogramming, and differentiated iPSC progenies with the phenotype resembling precursory MSCs. When exposing cells to exogenous H2O2, we showed that at low oxidative loads (<50 µM of H2O2) the gradient depended on extracellular H2O2 concentration. At high loads (>50 µM of H2O2), which caused the exhaustion of thioredoxin activity in the cell cytoplasm, the gradient stabilized, pointing out that it is the functional status of the thioredoxin-depended enzymatic system that drives the dependence of the H2O2 gradient on the oxidative load in human cells. At high H2O2 concentrations, the cytoplasmic H2O2 level in cancer cells was found to be several hundred times lower than the extracellular one. At the same time, in normal cells, extracellular-to-intracellular gradient amounted to thousands of times. Upon reprogramming, the potency of cellular antioxidant defense increased. In contrast, differentiation of iPSCs did not result in the changes in antioxidant system activity in the cell cytoplasm, assuming that intensification of the H2O2-detoxification processes is inherent to a period of early human development.


Assuntos
Peróxido de Hidrogênio , Células-Tronco Mesenquimais , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA