RESUMO
The need for sensitive, robust, portable, and inexpensive biosensing platforms is of significant interest in clinical applications for disease diagnosis and treatment monitoring at the point-of-care (POC) settings. Rapid, accurate POC diagnostic assays play a crucial role in developing countries, where there are limited laboratory infrastructure, trained personnel, and financial support. However, current diagnostic assays commonly require long assay time, sophisticated infrastructure and expensive reagents that are not compatible with resource-constrained settings. Although paper and flexible material-based platform technologies provide alternative approaches to develop POC diagnostic assays for broad applications in medicine, they have technical challenges integrating to different detection modalities. Here, we address the limited capability of current paper and flexible material-based platforms by integrating cellulose paper and flexible polyester films as diagnostic biosensing materials with various detection modalities through the development and validation of new widely applicable electrical and optical sensing mechanisms using antibodies and peptides. By incorporating these different detection modalities, we present selective and accurate capture and detection of multiple biotargets including viruses (Human Immunodeficiency Virus-1), bacteria (Escherichia coli and Staphylococcus aureus), and cells (CD4(+) T lymphocytes) from fingerprick volume equivalent of multiple biological specimens such as whole blood, plasma, and peritoneal dialysis effluent with clinically relevant detection and sensitivity.
Assuntos
Técnicas Biossensoriais , Infecções Bacterianas/diagnóstico , Contagem de Linfócito CD4/métodos , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/diagnóstico , Infecções por HIV/imunologia , HIV-1 , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e EspecificidadeRESUMO
Current red-blood-cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red-blood-cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bioprinting approach.
Assuntos
Bioimpressão/métodos , Criopreservação/métodos , Eritrócitos/citologia , Eritrócitos/fisiologia , Nanotecnologia/métodos , Vitrificação , Diamino Aminoácidos/química , Fenômenos Biomecânicos , Bioimpressão/instrumentação , Criopreservação/instrumentação , Humanos , Tinta , Espaço Intracelular/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Nanotecnologia/instrumentação , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Complemento 3b/metabolismoRESUMO
HIV has become one of the most devastating pathogens in human history. Despite fast progress in HIV-related basic research, antiretroviral therapy (ART) remains the most effective method to save AIDS patients' lives. Unfortunately, ART cannot be universally accessed, especially in developing countries, due to the lack of effective treatment monitoring diagnostics. Here, we present an inexpensive, rapid and portable micro-a-fluidic platform, which can streamline the process of an enzyme-linked immunosorbent assay (ELISA) in a fully automated manner for CD4 cell count. The micro-a-fluidic CD4 cell count is achieved by eliminating operational fluid flow via "moving the substrate", as opposed to "flowing liquid" in traditional ELISA or microfluidic methods. This is the first demonstration of capturing and detecting cells from unprocessed whole blood using the enzyme-linked immunosorbent assay (ELISA) in a microfluidic channel. Combined with cell phone imaging, the presented micro-a-fluidic ELISA platform holds great promise for offering rapid CD4 cell count to scale up much needed ART in resource-constrained settings. The developed system can be extended to multiple areas for ELISA-related assays.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Infecções por HIV/sangue , Infecções por HIV/diagnóstico , Microfluídica/instrumentação , Microfluídica/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/virologia , Telefone Celular , Citometria de Fluxo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Carga ViralRESUMO
Infectious diseases such as HIV and hepatitis B pose an omnipresent threat to global health. Reliable, fast, accurate, and sensitive platforms that can be deployed at the point-of-care (POC) in multiple settings, such as airports and offices, for detection of infectious pathogens are essential for the management of epidemics and possible biological attacks. To the best of our knowledge, no viral load technology adaptable to the POC settings exists today due to critical technical and biological challenges. Here, we present for the first time a broadly applicable technology for quantitative, nanoplasmonic-based intact virus detection at clinically relevant concentrations. The sensing platform is based on unique nanoplasmonic properties of nanoparticles utilizing immobilized antibodies to selectively capture rapidly evolving viral subtypes. We demonstrate the capture, detection, and quantification of multiple HIV subtypes (A, B, C, D, E, G, and subtype panel) with high repeatability, sensitivity, and specificity down to 98 ± 39 copies/mL (i.e., HIV subtype D) using spiked whole blood samples and clinical discarded HIV-infected patient whole blood samples validated by the gold standard, i.e., RT-qPCR. This platform technology offers an assay time of 1 h and 10 min (1 h for capture, 10 min for detection and data analysis). The presented platform is also able to capture intact viruses at high efficiency using immuno-surface chemistry approaches directly from whole blood samples without any sample preprocessing steps such as spin-down or sorting. Evidence is presented showing the system to be accurate, repeatable, and reliable. Additionally, the presented platform technology can be broadly adapted to detect other pathogens having reasonably well-described biomarkers by adapting the surface chemistry. Thus, this broadly applicable detection platform holds great promise to be implemented at POC settings, hospitals, and primary care settings.
Assuntos
Técnicas Biossensoriais/métodos , Sangue/virologia , HIV/isolamento & purificação , Nanotecnologia/métodos , HIV/fisiologia , Humanos , Poliestirenos/química , Reprodutibilidade dos Testes , Carga ViralRESUMO
Fertilization is central to the survival and propagation of a species, however, the precise mechanisms that regulate the sperm's journey to the egg are not well understood. In nature, the sperm has to swim through the cervical mucus, akin to a microfluidic channel. Inspired by this, a simple, cost-effective microfluidic channel is designed on the same scale. The experimental results are supported by a computational model incorporating the exhaustion time of sperm.
Assuntos
Movimento Celular , Microfluídica/métodos , Espermatozoides/citologia , Animais , Separação Celular , Simulação por Computador , Humanos , Masculino , Camundongos , Fatores de TempoRESUMO
Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development.
Assuntos
Bioengenharia/métodos , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Nanomedicina/métodos , Animais , Bioimpressão , HumanosAssuntos
Engenharia Tecidual , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Corantes Fluorescentes/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Camundongos , Células NIH 3T3 , Neurônios/citologia , Polímeros/química , SemicondutoresRESUMO
Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications.
Assuntos
Materiais Biocompatíveis/química , Biotecnologia/tendências , Técnicas de Cultura de Células/tendências , Matriz Extracelular/química , Hidrogéis/química , Engenharia Tecidual/tendências , MicroesferasRESUMO
Stimuli responsive, smart interface materials are integrated with microfluidic technologies creating new functions for a broad range of biological and clinical applications by controlling the material and cell interactions. Local capture and on-demand local release of cells are demonstrated with spatial and temporal control in a microfluidic system.
Assuntos
Resinas Acrílicas/química , Separação Celular/instrumentação , Citometria de Fluxo/instrumentação , Calefação/instrumentação , Linfócitos/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Adesão Celular , Movimento Celular , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Integração de SistemasRESUMO
Manipulation and encapsulation of cells in microdroplets has found many applications in various fields such as clinical diagnostics, pharmaceutical research, and regenerative medicine. The control over the number of cells in individual droplets is important especially for microfluidic and bioprinting applications. There is a growing need for modeling approaches that enable control over a number of cells within individual droplets. In this study, we developed statistical models based on negative binomial regression to determine the dependence of number of cells per droplet on three main factors: cell concentration in the ejection fluid, droplet size, and cell size. These models were based on experimental data obtained by using a microdroplet generator, where the presented statistical models estimated the number of cells encapsulated in droplets. We also propose a stochastic model for the total volume of cells per droplet. The statistical and stochastic models introduced in this study are adaptable to various cell types and cell encapsulation technologies such as microfluidic and acoustic methods that require reliable control over number of cells per droplet provided that settings and interaction of the variables is similar.
Assuntos
Microtecnologia/métodos , Modelos Estatísticos , Animais , Contagem de Células , Tamanho Celular , Camundongos , Processos EstocásticosRESUMO
BACKGROUND: Bone marrow plays a key role in bone formation and healing. Although a subset of marrow explants ossifies in vitro without excipient osteoinductive factors, some explants do not undergo ossification. The disparity of outcome suggests a significant heterogeneity in marrow tissue in terms of its capacity to undergo osteogenesis. QUESTIONS/PURPOSES: We sought to identify: (1) proteins and signaling pathways associated with osteogenesis by contrasting the proteomes of ossified and poorly ossified marrow explants; and (2) temporal changes in proteome and signaling pathways of marrow ossification in the early and late phases of bone formation. METHODS: Explants of marrow were cultured. Media conditioned by ossified (n = 4) and poorly ossified (n = 4) subsets were collected and proteins unique to each group were identified by proteomic analysis. Proteomic data were processed to assess proteins specific to the early phase (Days 1-14) and late phase (Days 15-28) of the culture period. Pathways involved in bone marrow ossification were identified through bioinformatics. RESULTS: Twenty-eight proteins were unique to ossified samples and eight were unique to poorly ossified ones. Twelve proteins were expressed during the early phase and 15 proteins were specific to the late phase. Several identified pathways corroborated those reported for bone formation in the literature. Immune and inflammatory pathways were specific to ossified samples. CONCLUSIONS: The marrow explant model indicates the inflammatory and immune pathways to be an integral part of the osteogenesis process.
Assuntos
Medula Óssea/imunologia , Medula Óssea/patologia , Mediadores da Inflamação/metabolismo , Ossificação Heterotópica , Osteogênese , Transdução de Sinais , Animais , Medula Óssea/diagnóstico por imagem , Biologia Computacional , Meios de Cultivo Condicionados/metabolismo , Proteômica/métodos , Ratos , Ratos Long-Evans , Fatores de Tempo , Técnicas de Cultura de Tecidos , Microtomografia por Raio-XRESUMO
Pathogenic agents can lead to severe clinical outcomes such as food poisoning, infection of open wounds, particularly in burn injuries and sepsis. Rapid detection of these pathogens can monitor these infections in a timely manner improving clinical outcomes. Conventional bacterial detection methods, such as agar plate culture or polymerase chain reaction, are time-consuming and dependent on complex and expensive instruments, which are not suitable for point-of-care (POC) settings. Therefore, there is an unmet need to develop a simple, rapid method for detection of pathogens such as Escherichia coli. Here, we present an immunobased microchip technology that can rapidly detect and quantify bacterial presence in various sources including physiologically relevant buffer solution (phosphate buffered saline [PBS]), blood, milk, and spinach. The microchip showed reliable capture of E. coli in PBS with an efficiency of 71.8% ± 5% at concentrations ranging from 50 to 4,000 CFUs/mL via lipopolysaccharide binding protein. The limits of detection of the microchip for PBS, blood, milk, and spinach samples were 50, 50, 50, and 500 CFUs/mL, respectively. The presented technology can be broadly applied to other pathogens at the POC, enabling various applications including surveillance of food supply and monitoring of bacteriology in patients with burn wounds.
Assuntos
Escherichia coli/isolamento & purificação , Microbiologia de Alimentos/instrumentação , Microbiologia de Alimentos/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Animais , Anticorpos Imobilizados/metabolismo , Sangue/microbiologia , Contagem de Colônia Microbiana , Escherichia coli/metabolismo , Humanos , Leite/microbiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Spinacia oleracea/microbiologia , Estatísticas não Paramétricas , Propriedades de SuperfícieRESUMO
The future of tissue engineering requires development of intelligent biomaterials using nanoparticles. Magnetic nanoparticles (MNPs) have several applications in biology and medicine; one example is Food and Drug Administration (FDA)-approved contrast agents in magnetic resonance imaging. Recently, MNPs have been encapsulated within cell-encapsulating hydrogels to create novel nanobiomaterials (i.e., M-gels), which can be manipulated and assembled in magnetic fields. The M-gels can be used as building blocks for bottom-up tissue engineering to create 3D tissue constructs. For tissue engineering applications of M-gels, it is essential to study the release of encapsulated MNPs from the hydrogel polymer network and the effect of MNPs on hydrogel properties, including mechanical characteristics, porosity, swelling behavior, and cellular response (e.g., viability, growth). Therefore, we evaluated the release of MNPs from photocrosslinkable gelatin methacrylate hydrogels as the polymer network undergoes biodegradation using inductively coupled plasma atomic emission spectroscopy. MNP release correlated linearly with hydrogel biodegradation rate with correlation factors (Pearson product moment correlation coefficient) of 0.96 ± 0.03 and 0.99 ± 0.01 for MNP concentrations of 1% and 5%, respectively. We also evaluated the effect of MNPs on hydrogel mechanical properties, porosity, and swelling behavior, as well as cell viability and growth in MNP-encapsulating hydrogels. Fibroblasts encapsulated with MNPs in hydrogels remained viable (>80% at t = 144 h) and formed microtissue constructs in culture (t = 144 h). These results indicated that MNP-encapsulating hydrogels show promise as intelligent nanobiomaterials, with great potential to impact broad areas of bioengineering, including tissue engineering, regenerative medicine, and pharmaceutical applications.
Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Hidrogéis/química , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Animais , Difusão , Dureza , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Células NIH 3T3 , PorosidadeRESUMO
AIM: Oocyte cryopreservation remains largely experimental, with live birth rates of only 2-4% per thawed oocyte. In this study, we present a nanoliter droplet technology for oocyte vitrification. MATERIALS & METHODS: An ejector-based droplet vitrification system was designed to continuously cryopreserve oocytes in nanoliter droplets. Oocyte survival rates, morphologies and parthenogenetic development after each vitrification step were assessed in comparison with fresh oocytes. RESULTS: Oocytes were retrieved after cryoprotectant agent loading/unloading, and nanoliter droplet encapsulation showed comparable survival rates to fresh oocytes after 24 h in culture. Also, oocytes recovered after vitrification/thawing showed similar morphologies to those of fresh oocytes. Additionally, the rate of oocyte parthenogenetic activation after nanoliter droplet encapsulation was comparable with that observed for fresh oocytes. This nanoliter droplet technology enables the vitrification of oocytes at higher cooling and warming rates using lower cryoprotectant agent levels (i.e., 1.4 M ethylene glycol, 1.1 M dimethyl sulfoxide and 1 M sucrose), thus making it a potential technology to improve oocyte cryopreservation outcomes.
Assuntos
Criopreservação/métodos , Oócitos , Animais , Crioprotetores , Feminino , CamundongosRESUMO
Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological sciences, such as tissue engineering, regenerative medicine, rare cell and stem cell isolation, proteomic/genomic research, and clonal/population analyses.
Assuntos
Linfócitos T CD4-Positivos/citologia , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/métodos , Células-Tronco/citologia , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Antígenos CD34/metabolismo , Biotina/química , Biotina/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Separação Celular/instrumentação , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Células-Tronco/metabolismoRESUMO
Cell/tissue biopreservation has broad public health and socio-economic impact affecting millions of lives. Cryopreservation technologies provide an efficient way to preserve cells and tissues targeting the clinic for applications including reproductive medicine and organ transplantation. Among these technologies, vitrification has displayed significant improvement in post-thaw cell viability and function by eliminating harmful effects of ice crystal formation compared to the traditional slow freezing methods. However, high cryoprotectant agent concentrations are required, which induces toxicity and osmotic stress to cells and tissues. It has been shown that vitrification using small sample volumes (i.e., <1 µl) significantly increases cooling rates and hence reduces the required cryoprotectant agent levels. Recently, emerging nano- and micro-scale technologies have shown potential to manipulate picoliter to nanoliter sample sizes. Therefore, the synergistic integration of nanoscale technologies with cryogenics has the potential to improve biopreservation methods.
Assuntos
Criopreservação/métodos , Vitrificação , CrioprotetoresRESUMO
High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.